albert-fine-tuned / README.md
Thamer Smadi
Training in progress epoch 2
b3bfa72
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
base_model: albert-base-v2
tags:
  - generated_from_keras_callback
model-index:
  - name: Thamer/albert-fine-tuned
    results: []

Thamer/albert-fine-tuned

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6843
  • Train Binary Accuracy: 0.5640
  • Validation Loss: 0.6990
  • Validation Binary Accuracy: 0.5092
  • Train Accuracy: 0.6032
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 3156, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Binary Accuracy Validation Loss Validation Binary Accuracy Train Accuracy Epoch
0.6987 0.5410 0.6446 0.6835 0.5333 0
0.6976 0.5642 0.6981 0.5092 0.4908 1
0.6843 0.5640 0.6990 0.5092 0.6032 2

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.11.0
  • Datasets 2.13.1
  • Tokenizers 0.13.3