Thanks to bartowski we have /HerculeanSea-7b-128k-exl2 https://huggingface.co/bartowski/HerculeanSea-7b-128k-exl2
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: Test157t/Pasta-Sea-7b-128k
layer_range: [0, 32]
- model: Locutusque/Hercules-2.0-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Pasta-Sea-7b-128k
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.53 |
AI2 Reasoning Challenge (25-Shot) | 66.21 |
HellaSwag (10-Shot) | 85.80 |
MMLU (5-Shot) | 64.28 |
TruthfulQA (0-shot) | 55.77 |
Winogrande (5-shot) | 80.74 |
GSM8k (5-shot) | 58.38 |
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Nitral-Archive/HerculeanSea-7b-128k
Base model
Locutusque/Hercules-2.0-Mistral-7BEvaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.210
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.800
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.280
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.770
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.740
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard58.380