File size: 49,394 Bytes
a50a5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# This code is based on OpenAI's GPT-2 library. It has been modified from its
# original forms to accommodate architectural differences compared to GPT-2.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TELECHAT model."""

from typing import Optional, Tuple, Union

import math
import torch
from einops import rearrange
from torch import einsum, nn
from torch.cuda.amp import autocast
import torch.nn.functional as F
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_conv1d_layer
from transformers.utils import logging
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func # flashattn1
    print("# FLASH ATTENTION 1 DETECTED #")
except ImportError:
    try:
        from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func # flashattn2
        print("# FLASH ATTENTION 2 DETECTED #")
    except ImportError:
        print("# NO FLASH ATTENTION DETECTED #")
        flash_attn_unpadded_func = None
from .configuration_telechat import TELECHATConfig


def debug_print_tensor(t, name, title='', show_dim=10):
    # return
    prefix = f'{title} -> '
    if isinstance(t, torch.Tensor):
        if len(t.shape) == 1:
            output = f"{name}[{t.shape}]: {t[:show_dim]}"
        elif len(t.shape) == 2:
            output = f"{name}[{t.shape}]: {t[-1, :show_dim]}"
        elif len(t.shape) == 3:
            output = f" {name}[{t.shape}]: {t[-1, -1, :show_dim]}"
        elif len(t.shape) == 4:
            output = f"{name}[{t.shape}]: {t[-1, -1, -1, :show_dim]}"
        else:
            output = f"{name}[{t.shape}]"
    elif isinstance(t, list):
        output = f"{name} [{len(t)}]: {t[:show_dim]}"
    else:
        output = f"{name} 未知类型: {type(t)}"
    print(prefix + output)



class Conv1D(nn.Module):

    def __init__(self, nf, nx, bias=True):
        super().__init__()
        self.nf = nf
        self.weight = nn.Parameter(torch.empty(nx, nf))
        self.bias = None
        if bias:
            self.bias = nn.Parameter(torch.zeros(nf))
        nn.init.normal_(self.weight, std=0.02)

    def forward(self, x):
        if self.bias is not None:
            return torch.matmul(x, self.weight) + self.bias
        else:
            return torch.matmul(x, self.weight)



class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
        return self.weight * hidden_states.to(input_dtype)


logger = logging.get_logger(__name__)


def exists(v):
    return v is not None


class RotaryEmbedding(nn.Module):
    def __init__(self, dim, use_xpos=False, xpos_scale_base=512, theta=10000):
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)
        self.cache = dict()
        self.cache_scale = dict()
        self.use_xpos = use_xpos
        if not use_xpos:
            self.register_buffer('scale', None)
            return
        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
        self.register_buffer('scale', scale)
        self.scale_base = xpos_scale_base

    def forward(self, seq, cache_key=None):

        if cache_key is not None and cache_key in self.cache:
            return self.cache[cache_key]

        inv_freq = self.inv_freq.to(device=seq.device)
        freqs = einsum('i , j -> i j', seq, inv_freq)
        # first part even vector components, second part odd vector components,
        #  2 * dim in dimension size
        scale = torch.cat((freqs, freqs), dim=-1)
        if exists(cache_key):
            self.cache[cache_key] = scale
        return scale

    def rotate_queries_and_keys(self, q, k, seq_dim=-2):
        """
        use this only when xpos is activated.
        """
        assert self.use_xpos and q.device == k.device
        device, seq_len_k, seq_len_q = k.device, k.shape[seq_dim], q.shape[seq_dim]
        pos_seq_k = torch.arange(seq_len_k, device=device, dtype=torch.float32)
        pos_seq_q = torch.arange(seq_len_k - seq_len_q, seq_len_k, device=device, dtype=torch.float32)
        freqs_k = self.forward(pos_seq_k, cache_key=f"{0}:{seq_len_k}")
        freqs_q = self.forward(pos_seq_q, cache_key=f"{seq_len_k - seq_len_q}:{seq_len_k}")
        scale_k = self.get_scale(pos_seq_k)
        scale_q = self.get_scale(pos_seq_q, offset=seq_len_k - seq_len_q)  # 这里的offset是Q相对于K的offset
        rotated_q = apply_rotary_emb(freqs_q, q, scale=scale_q)
        rotated_k = apply_rotary_emb(freqs_k, k, scale=scale_k ** -1)
        return rotated_q, rotated_k

    def rotate_queries_or_keys(self, t, seq_dim=-2, offset=0):
        """
        use this only when xpos is NOT activated.
        """
        # t's shape e.g.  -> (batchsize, headnum, seqlen, dimofhead)
        assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings'
        device, seq_len = t.device, t.shape[seq_dim]
        pos_seq_t = torch.arange(offset, offset + seq_len, device=device, dtype=torch.float32)
        freqs = self.forward(pos_seq_t, cache_key=f"{offset}:{offset+seq_len}")
        # freqs   seqlen  x  dim
        return apply_rotary_emb(freqs, t)

    def get_scale(self, t, cache_key=None, offset=0, ):
        assert self.use_xpos, 'This function is only useful for xpos.'
        if exists(cache_key) and cache_key in self.cache_scale:
            return self.cache_scale[cache_key]
        if callable(t):
            t = t()
        length = len(t)
        min_pos = -(length + offset) // 2
        max_pos = length + offset + min_pos
        power = torch.arange(min_pos, max_pos, 1).to(device=self.scale.device) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')
        scale = scale[-length:, :]
        scale = torch.cat((scale, scale), dim=-1)
        if exists(cache_key):
            self.cache_scale[cache_key] = scale
        return scale


def rotate_half(x):
    """
    change sign so the last dimension becomes [-odd, +even]
    """
    x1, x2 = torch.chunk(x, 2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_emb(freqs, t, start_index=0, scale=1.):
    """
    freq: seqlen  x  dim
       t: [batchsize  *  headnum  ,  seqlen  , dim (dim_of_head actually)]
    """
    dtype_t = t.dtype
    freqs = freqs.to(device=t.device)
    if isinstance(scale, torch.Tensor):
        scale = scale.to(device=t.device)
    rot_dim = freqs.shape[-1]
    end_index = start_index + rot_dim
    t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
    t = (t * freqs.cos() + rotate_half(t) * freqs.sin()) * scale
    rotated = torch.cat((t_left, t, t_right), dim=-1)
    rotated = rotated.to(dtype=dtype_t)
    return rotated


class TELECHATAttention(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e4))

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.split_size = self.embed_dim
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.scale_attn_weights = config.scale_attn_weights

        # Layer-wise attention scaling, reordering, and upcasting
        self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
        # for alignment with megatron-lm in softmax scale
        self.layer_idx = max(1, layer_idx)
        self.reorder_and_upcast_attn = config.reorder_and_upcast_attn

        self.relative_encoding = config.relative_encoding
        self.rotary_use_xpos = config.rotary_use_xpos

        self.use_mup = config.use_mup

        self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim, bias=config.add_bias_linear)
        self.c_proj = Conv1D(self.embed_dim, self.embed_dim, bias=config.add_bias_linear)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.pruned_heads = set()

        self.use_flash_attn = False



    def set_max_positions(self, max_positions, device='cuda'):
        self.max_positions = max_positions
        self.register_buffer(
            "bias",
            torch.tril(torch.ones((self.max_positions, self.max_positions), dtype=torch.bool)).view(
                1, 1, self.max_positions, self.max_positions
            ).to(device=device)
        )

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
        index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])

        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)

        # Update hyper params
        self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
        self.num_heads = self.num_heads - len(heads)
        self.pruned_heads = self.pruned_heads.union(heads)

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # (batch, head, seq_length, head_features)
        # batch_size, head_num, k_seq_len(q_seq_len), head_features
        batch_size, head_num, k_seq_len, head_features = key.shape
        _, _, q_seq_len, _ = query.shape

        if self.use_flash_attn:
            # print("*")
            # attn_output = torch.nn.functional._scaled_dot_product_attention(query, key, value, is_causal=True)
            # attn_weights = None
            # return attn_output, attn_weights

            batch_size, seqlen_q = query.shape[0], query.shape[2]
            seqlen_k = key.shape[2]

            query, key, value = [rearrange(x, 'b h s ... -> (b s) h ...') for x in [query, key, value]]
            cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
                                        device=query.device)
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
                                        device=query.device)
            dropout_p = 0

            softmax_scale = 1/torch.full([], (value.size(-1) ** 0.5), dtype=value.dtype, device=value.device) if self.scale_attn_weights else 1
            attn_output = flash_attn_unpadded_func(
                query, key, value, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
                dropout_p,
                softmax_scale=softmax_scale, causal=is_causal
            )
            attn_output = rearrange(attn_output, '(b s) h ... -> b h s ...', b=batch_size)
            attn_weights = None
            return attn_output, attn_weights

        attn_weights = torch.matmul(query, key.transpose(-1, -2))

        if self.scale_attn_weights:
            if self.use_mup:
                attn_weights = attn_weights / torch.full(
                    [], value.size(-1) / (value.size(-1) ** 0.5), dtype=attn_weights.dtype,
                    device=attn_weights.device
                )
            else:
                attn_weights = attn_weights / torch.full(
                    [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
                )

        if not self.is_cross_attention:
            # if only "normal" attention layer implements causal mask
            query_length, key_length = query.size(-2), key.size(-2)
            causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
            mask_value = torch.finfo(attn_weights.dtype).min
            # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
            # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
            mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
            attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
        # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
        bsz, num_heads, q_seq_len, dk = query.size()
        _, _, k_seq_len, _ = key.size()

        # Preallocate attn_weights for `baddbmm`
        attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=query.dtype, device=query.device)

        # Compute Scale Factor
        scale_factor = 1.0
        if self.scale_attn_weights:
            scale_factor /= float(value.size(-1)) ** 0.5

        if self.scale_attn_by_inverse_layer_idx:
            scale_factor /= float(self.layer_idx)
        # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
        with autocast(enabled=False):
            q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
            attn_weights = torch.baddbmm(attn_weights, q, k, beta=0, alpha=scale_factor)
            attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)

        if not self.is_cross_attention:
            attn_weights = attn_weights.float()
            if self.scale_attn_by_inverse_layer_idx:
                attn_weights *= self.layer_idx
            # if only "normal" attention layer implements causal mask
            query_length, key_length = query.size(-2), key.size(-2)
            causal_mask = self.bias[:, :, key_length - query_length: key_length, :key_length]
            mask_value = -10000.0  # align with megatron-lm
            # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
            # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
            mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
            attn_weights = torch.where(causal_mask, attn_weights, mask_value)

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
        # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
        if attn_weights.dtype != torch.float32:
            raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
        attn_weights = attn_weights.type(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask
        attn_output = torch.matmul(attn_weights, value)
        return attn_output, attn_weights

    def _split_heads(self, tensor, num_heads, attn_head_size):
        """
        Splits hidden_size dim into attn_head_size and num_heads
        """
        new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
        tensor = tensor.view(new_shape)
        return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)

    def _merge_heads(self, tensor, num_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden_size
        """
        tensor = tensor.permute(0, 2, 1, 3).contiguous()
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
        return tensor.view(new_shape)

    def forward(
            self,
            hidden_states: Optional[Tuple[torch.FloatTensor]],
            layer_past: Optional[Tuple[torch.Tensor]] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            rotary_embedding: Optional[RotaryEmbedding] = None,
            use_cache: Optional[bool] = False,
            output_attentions: Optional[bool] = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
        if encoder_hidden_states is not None:
            if not hasattr(self, "q_attn"):
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
            attention_mask = encoder_attention_mask
        else:
            query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)

        query = self._split_heads(query, self.num_heads, self.head_dim)
        key = self._split_heads(key, self.num_heads, self.head_dim)
        value = self._split_heads(value, self.num_heads, self.head_dim)

        if layer_past is not None:
            past_key, past_value = layer_past
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        batch_size, head_num, k_seq_len, head_features = key.shape
        _, _, q_seq_len, _ = query.shape
        query_offset = k_seq_len - q_seq_len
        if rotary_embedding is not None:
            query = query.contiguous().view(batch_size * head_num, q_seq_len, head_features)
            key = key.contiguous().view(batch_size * head_num, k_seq_len, head_features)

            # batch_size * head_num,  k_seq_len(q_seq_len), head_features
            if self.rotary_use_xpos:
                # query: [batch_size * head_num, seqlen, hn]
                query, key = rotary_embedding.rotate_queries_and_keys(query, key)
            else:
                query = rotary_embedding.rotate_queries_or_keys(query, offset=query_offset)
                key = rotary_embedding.rotate_queries_or_keys(key)
            # batch_size * head_num, k_seq_len(q_seq_len), head_features
            query = query.view(batch_size, head_num, q_seq_len, head_features)
            key = key.view(batch_size, head_num, k_seq_len, head_features)

        if self.reorder_and_upcast_attn and not self.use_flash_attn:
            attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
        else:
            attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
        attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)
        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class TELECHATMLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        embed_dim = config.hidden_size
        if config.activation_function=='silu':
            up_intermediate_size = 2 * intermediate_size
        else:
            up_intermediate_size = intermediate_size
        self.c_fc = Conv1D(up_intermediate_size, embed_dim, bias=config.add_bias_linear)
        self.c_proj = Conv1D(embed_dim, intermediate_size, bias=config.add_bias_linear)
        if config.activation_function=='silu':
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.act = swiglu
        else:
            self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        # print(f'activation func: {self.act}')
        # print(f'before act: hidden_states {hidden_states.shape}')
        hidden_states = self.act(hidden_states)
        # print(f'after  act: hidden_states {hidden_states.shape}')
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class TELECHATBlock(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        LayerNorm = nn.LayerNorm if not config.use_RMSNorm else RMSNorm
        hidden_size = config.hidden_size
        inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
        self.layer_idx = layer_idx
        self.ln_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = TELECHATAttention(config, layer_idx=layer_idx)
        self.ln_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = TELECHATMLP(inner_dim, config)

    def forward(
            self,
            hidden_states: Optional[Tuple[torch.FloatTensor]],
            layer_past: Optional[Tuple[torch.Tensor]] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            rotary_embedding: Optional[RotaryEmbedding] = None,
            use_cache: Optional[bool] = False,
            output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        # debug_print_tensor(hidden_states, 'after ln_1')
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            rotary_embedding=rotary_embedding,
            use_cache=use_cache,
            output_attentions=output_attentions
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states
        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]
        # debug_print_tensor(hidden_states, 'block output')

        return outputs


class TELECHATPretrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = TELECHATConfig
    load_tf_weights = None
    base_model_prefix = "transformer"
    is_parallelizable = True
    supports_gradient_checkpointing = True
    _no_split_modules = ["TELECHATBlock"]

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear, Conv1D)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm) or isinstance(module, RMSNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name == "c_proj.weight":
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, TELECHATTransformer):
            module.gradient_checkpointing = value


class TELECHATTransformer(TELECHATPretrainedModel):
    _keys_to_ignore_on_load_missing = ["attn.masked_bias"]

    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.hidden_size

        self.relative_encoding = config.relative_encoding
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)

        self.use_mup = config.use_mup
        if self.use_mup:
            self.input_mult = config.input_mult

        if self.relative_encoding is None:
            self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
        elif self.relative_encoding == 'rotary':
            pe_dim = config.n_embd // config.n_head
            self.wpe = RotaryEmbedding(pe_dim,
                                       use_xpos=config.rotary_use_xpos,
                                       xpos_scale_base=config.rotary_xpos_scale_base,
                                       theta=config.rotary_theta
                                       )

        else:
            raise RuntimeError(
                f'Unknown relative positional encoding type: `relative_encoding`={self.relative_encoding}')
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([TELECHATBlock(config, layer_idx=i + 1) for i in range(config.num_hidden_layers)])
        LayerNorm = nn.LayerNorm if not config.use_RMSNorm else RMSNorm
        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    # @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
        # Check validity of device_map
        self.device_map = (
            get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
        )
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        self.wpe = self.wpe.to(self.first_device)
        # Load onto devices
        for k, v in self.device_map.items():
            for block in v:
                cuda_device = "cuda:" + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        # ln_f to last
        self.ln_f = self.ln_f.to(self.last_device)

    def deparallelize(self):
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        self.wpe = self.wpe.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            token_type_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # GPT2Attention mask.
        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and the dtype's smallest value for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        # if self.config.add_cross_attention and encoder_hidden_states is not None:
        #     encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
        #     encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
        #     if encoder_attention_mask is None:
        #         encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
        #     encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        # else:
        #     encoder_attention_mask = None
        encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        # Mup
        if self.use_mup:
            inputs_embeds = inputs_embeds * self.input_mult
        if self.relative_encoding is None:
            position_embeds = self.wpe(position_ids)
            hidden_states = inputs_embeds + position_embeds
        elif self.relative_encoding == 'rotary':
            hidden_states = inputs_embeds
        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds
        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        # debug_print_tensor(hidden_states, 'after embedding')
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):

            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    rotary_embedding=self.wpe if self.relative_encoding == 'rotary' else None,
                    use_cache=use_cache,
                    output_attentions=output_attentions
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                # if self.config.add_cross_attention:
                #     all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class TELECHAT(TELECHATPretrainedModel):
    _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.transformer = TELECHATTransformer(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.use_mup = config.use_mup
        if self.use_mup:
            self.mup_scale_factor = config.mup_scale_factor
            self.output_mult = config.output_mult / self.mup_scale_factor
        
        # 初始化时先根据config里的开关决定是否开启flashattn, 用户可以通过修改config或者model.enable_flash_attn修改flashattn的开关
        self.enable_flash_attn(config.enable_flash_attn)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()
    def enable_flash_attn(self, enabled: bool):
        for block in self.transformer.h:
            block.attn.use_flash_attn = enabled
        print(f"TELECHAT flash attention {'enabled' if enabled else 'disabled'}")
        # torch.backends.cuda.enable_flash_sdp(enabled)
    def set_max_positions(self, max_positions):
        for layer in self.transformer.h:
            device = layer.ln_1.weight.device
            layer.attn.set_max_positions(max_positions, device=device)

    def parallelize(self, device_map=None):
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    def deparallelize(self):
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            token_type_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        lm_logits = self.lm_head(hidden_states)
        # Mup
        if self.use_mup:
            lm_logits = lm_logits * self.output_mult

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    def chat(self,tokenizer, question, history_input_list, history_output_list,generation_config):
            '''
            :param question: 当前问题
            :param history_input_list: 历史问题列表, list of strings
            :param history_output_list: 历史回答列表, list of string
            :return: response
            '''

            inputs = ""
            assert len(history_output_list) == len(history_output_list)
            for i in range(len(history_input_list)):
                inputs += "<_user>" + history_input_list[i] + "<_bot>" + history_output_list[i] + "<_end>"
            inputs += "<_user>" + question + "<_bot>"
            print("input:", inputs)
            input_ids = tokenizer.encode(inputs,
                                         return_tensors="pt"
                                         )
            if len(input_ids[0]) >= 2000:
                input_ids = input_ids[:, -2000:]
            input_ids = input_ids.to(0)
            output = self.generate(input_ids,generation_config)
            response = tokenizer.decode(output[0].cpu().numpy().tolist()).split('<_bot>')[-1].split('</s>')[0]
            return response

    @staticmethod
    def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past
        )