lilt-ru-bio

This model was trained from scratch on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4705
  • Answer: {'precision': 0.8711583924349882, 'recall': 0.9020807833537332, 'f1': 0.8863499699338545, 'number': 817}
  • Header: {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119}
  • Question: {'precision': 0.8966455122393472, 'recall': 0.9182915506035283, 'f1': 0.9073394495412844, 'number': 1077}
  • Overall Precision: 0.8732
  • Overall Recall: 0.8892
  • Overall F1: 0.8811
  • Overall Accuracy: 0.8223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0199 5.26 100 1.3310 {'precision': 0.8788627935723115, 'recall': 0.8702570379436965, 'f1': 0.8745387453874538, 'number': 817} {'precision': 0.6288659793814433, 'recall': 0.5126050420168067, 'f1': 0.5648148148148148, 'number': 119} {'precision': 0.8519148936170213, 'recall': 0.9294336118848654, 'f1': 0.8889875666074601, 'number': 1077} 0.8520 0.8808 0.8661 0.8038
0.0085 10.53 200 1.5426 {'precision': 0.8631578947368421, 'recall': 0.9033047735618115, 'f1': 0.8827751196172249, 'number': 817} {'precision': 0.5641025641025641, 'recall': 0.5546218487394958, 'f1': 0.559322033898305, 'number': 119} {'precision': 0.899812734082397, 'recall': 0.8922934076137419, 'f1': 0.8960372960372962, 'number': 1077} 0.8652 0.8768 0.8710 0.8120
0.0047 15.79 300 1.5043 {'precision': 0.8698710433763188, 'recall': 0.9082007343941249, 'f1': 0.8886227544910178, 'number': 817} {'precision': 0.5508474576271186, 'recall': 0.5462184873949579, 'f1': 0.5485232067510548, 'number': 119} {'precision': 0.8980716253443526, 'recall': 0.9080779944289693, 'f1': 0.9030470914127423, 'number': 1077} 0.8665 0.8867 0.8765 0.8086
0.0017 21.05 400 1.4705 {'precision': 0.8711583924349882, 'recall': 0.9020807833537332, 'f1': 0.8863499699338545, 'number': 817} {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119} {'precision': 0.8966455122393472, 'recall': 0.9182915506035283, 'f1': 0.9073394495412844, 'number': 1077} 0.8732 0.8892 0.8811 0.8223
0.0012 26.32 500 1.5088 {'precision': 0.8744075829383886, 'recall': 0.9033047735618115, 'f1': 0.8886213124623721, 'number': 817} {'precision': 0.5904761904761905, 'recall': 0.5210084033613446, 'f1': 0.5535714285714286, 'number': 119} {'precision': 0.8935395814376706, 'recall': 0.9117920148560817, 'f1': 0.9025735294117648, 'number': 1077} 0.8701 0.8852 0.8776 0.8174

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.