multiple_answer_QA

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.7334
  • Accuracy: 0.2675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 175 1.3886 0.23
No log 2.0 350 1.3892 0.255
1.3936 3.0 525 1.3863 0.2375
1.3936 4.0 700 1.3868 0.255
1.3936 5.0 875 1.4511 0.26
1.2973 6.0 1050 1.6738 0.24
1.2973 7.0 1225 1.9684 0.265
1.2973 8.0 1400 2.5002 0.28
0.6916 9.0 1575 2.9872 0.28
0.6916 10.0 1750 3.2354 0.28
0.6916 11.0 1925 3.6618 0.3025
0.2428 12.0 2100 4.1750 0.275
0.2428 13.0 2275 4.1384 0.275
0.2428 14.0 2450 4.5173 0.26
0.1118 15.0 2625 4.6013 0.275
0.1118 16.0 2800 4.2549 0.2525
0.1118 17.0 2975 5.2751 0.275
0.0482 18.0 3150 4.9489 0.275
0.0482 19.0 3325 5.6077 0.28
0.0261 20.0 3500 5.3054 0.2625
0.0261 21.0 3675 5.1955 0.2625
0.0261 22.0 3850 5.6210 0.2575
0.0175 23.0 4025 5.6576 0.25
0.0175 24.0 4200 5.6687 0.2725
0.0175 25.0 4375 5.6082 0.255
0.0133 26.0 4550 5.5999 0.27
0.0133 27.0 4725 5.7972 0.26
0.0133 28.0 4900 5.6427 0.2575
0.0089 29.0 5075 5.7253 0.2675
0.0089 30.0 5250 5.7334 0.2675

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
19
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.