File size: 1,189 Bytes
45f1236 1c23a6a 45f1236 e6b3e3d 2c742c2 190151e e6b3e3d 5517e7a 75d3fc0 5517e7a da2363f 5517e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language: de
widget:
- text: "Hallo, ich bin ein Sprachmodell"
license: gnu
---
<h2> GPT2 Model for German Language </h2>
Model Name: Tanhim/gpt2-model-de <br />
language: German or Deutsch <br />
thumbnail: "https://huggingface.co/Tanhim/gpt2-model-de" <br />
datasets: Ten Thousand German News Articles Dataset <br />
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, I
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generation= pipeline('text-generation', model='Tanhim/gpt2-model-de')
>>> set_seed(42)
>>> generation("Hallo, ich bin ein Sprachmodell,", max_length=30, num_return_sequences=5)
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("Tanhim/gpt2-model-de")
model = AutoModelWithLMHead.from_pretrained("Tanhim/gpt2-model-de")
text = "Ersetzen Sie mich durch einen beliebigen Text, den Sie wünschen."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
``` |