Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Validation Metrics

loss: 0.1564033180475235

f1_macro: 0.9023266184854538

f1_micro: 0.9275

f1_weighted: 0.9281147770697895

precision_macro: 0.8944987578959265

precision_micro: 0.9275

precision_weighted: 0.9308721399366291

recall_macro: 0.9135199509056998

recall_micro: 0.9275

recall_weighted: 0.9275

accuracy: 0.9275

Exemple d'utilisation

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Définir le nom du modèle et le token d'accès
model_name = "TPM-28/emotion-FR-camembert"
access_token = "<HF_token>"

# Charger le tokenizer et le modèle
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
model = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=access_token)

# Définir les classes
classes = ["anger", "fear", "joy", "love", "sadness", "surprise"]

def classify_text(text):
    # Tokenizer le texte
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)

    # Effectuer l'inférence
    with torch.no_grad():
        outputs = model(**inputs)

    # Obtenir les prédictions
    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
    prediction = torch.argmax(probabilities, dim=-1)

    # Obtenir la classe prédite et sa probabilité
    predicted_class = classes[prediction.item()]
    confidence = probabilities[0][prediction].item()

    return predicted_class, confidence

# Exemple d'utilisation
text_to_classify = "je suis vraiment content"
predicted_class, confidence = classify_text(text_to_classify)

print(f"Texte : {text_to_classify}")
print(f"Classe prédite : {predicted_class}")
print(f"Confiance : {confidence:.2f}")
Downloads last month
0
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for TPM-28/emotion-FR-camembert

Finetuned
(92)
this model