File size: 8,573 Bytes
aeb03e3
 
3dfdf07
 
38eedb5
aeb03e3
3dfdf07
 
 
38eedb5
 
aeb03e3
3dfdf07
38eedb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb03e3
 
d613393
aeb03e3
397fc1e
 
04e0173
 
397fc1e
 
 
 
 
 
 
aeb03e3
 
 
 
 
 
 
 
 
 
 
f5616c0
 
b7588ac
aeb03e3
 
 
 
 
 
 
 
 
 
f5616c0
 
 
 
 
 
 
aeb03e3
38eedb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
language:
- zh
- en
license: other
tags:
- glm
- chatglm
- thudm
license_name: glm-4
license_link: https://huggingface.co/THUDM/glm-4-9b/main/LICENSE
inference: false
pipeline_tag: text-generation
model-index:
- name: glm-4-9b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 73.27
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 64.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 55.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 93.34
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 81.29
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 83.14
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 81.1
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 70.87
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 73.03
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=THUDM/glm-4-9b
      name: Open Portuguese LLM Leaderboard
---

# GLM-4-9B

Read this in [English](README_en.md)

**2024/08/12, 本仓库代码已更新并使用 `transforemrs>=4.44.0`, 请及时更新依赖。**

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
**GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
表现出超越 GPT-4-turbo-2024-04-09、Gemini
1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

我们在一些典型任务上对 GLM-4-9B 基座模型进行了评测,结果如下:

| Model               |   MMLU   |  C-Eval  |   GPQA   |  GSM8K   |   MATH   | HumanEval |
|:--------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:---------:|
| Llama-3-8B          |   66.6   |   51.2   |    -     |   45.8   |    -     |     -     | 
| Llama-3-8B-Instruct |   68.4   |   51.3   |   34.2   |   79.6   |   30.0   |   62.2    |
| ChatGLM3-6B-Base    |   61.4   |   69.0   |    -     |   72.3   |   25.7   |     -     |
| GLM-4-9B            | **74.7** | **77.1** | **34.3** | **84.0** | **30.4** | **70.1**  |


更多推理代码和依赖信息,请访问我们的 [github](https://github.com/THUDM/GLM-4) 。

**本仓库是 GLM-4-9B 的基座版本,支持`8K`上下文长度。**

## 协议

GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。

## 引用

如果你觉得我们的工作有帮助的话,请考虑引用下列论文。

```
@misc{glm2024chatglm,
      title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools}, 
      author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
      year={2024},
      eprint={2406.12793},
      archivePrefix={arXiv},
      primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}
```


# Open Portuguese LLM Leaderboard Evaluation Results  

Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/THUDM/glm-4-9b) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**75.17**|
|ENEM Challenge (No Images)|    73.27|
|BLUEX (No Images)         |    64.53|
|OAB Exams                 |    55.95|
|Assin2 RTE                |    93.34|
|Assin2 STS                |    81.29|
|FaQuAD NLI                |    83.14|
|HateBR Binary             |    81.10|
|PT Hate Speech Binary     |    70.87|
|tweetSentBR               |    73.03|