File size: 5,297 Bytes
1f6d03b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Idefics."""

from typing import Callable, Dict, List, Optional, Union

from PIL import Image


from transformers.image_processing_utils import BaseImageProcessor, BatchFeature


from transformers.image_utils import (
    ImageInput
)
from transformers.utils import TensorType, is_torch_available

from torchvision import transforms




class Cogvlm2ImageProcessor(BaseImageProcessor):
    r"""
    Constructs a Idefics image processor.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            Resize to image size
        image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
            overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        image_num_channels (`int`, *optional*, defaults to 3):
            Number of image channels.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        image_size: int = 1344,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        image_num_channels: Optional[int] = 3,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)

        self.image_size = image_size
        self.image_num_channels = image_num_channels
        self.image_mean = image_mean
        self.image_std = image_std

    def preprocess(
        self,
        images: ImageInput,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> TensorType:
        """
        Preprocess a batch of images.

        Args:
            images (`ImageInput`):
                A list of images to preprocess.
            image_size (`int`, *optional*, defaults to `self.image_size`):
                Resize to image size
            image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`):
                Number of image channels.
            image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
                Mean to use if normalizing the image. This is a float or list of floats the length of the number of
                channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can
                be overridden by the `image_mean` parameter in the `preprocess` method.
            image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
                Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
                number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess`
                method. Can be overridden by the `image_std` parameter in the `preprocess` method.
            transform (`Callable`, *optional*, defaults to `None`):
                A custom transform function that accepts a single image can be passed for training. For example,
                `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is
                assumed - and then a preset of inference-specific transforms will be applied to the images

        Returns:
            a PyTorch tensor of the processed images

        """
        
        # For training a user needs to pass their own set of transforms as a Callable.
        # For reference this is what was used in the original IDEFICS training:
        transform = transforms.Compose(
                [
                    transforms.Resize(
                        (self.image_size, self.image_size), interpolation=transforms.InterpolationMode.BICUBIC
                    ),
                    transforms.ToTensor(),
                    transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
                ]
            )

        images = transform(images).unsqueeze(0)

        images = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)

        return images