File size: 3,640 Bytes
37d58a3
 
ccc7465
 
37d58a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b7269
37d58a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc2006a
 
 
 
 
 
 
 
37d58a3
 
 
b7b7269
37d58a3
 
 
 
 
 
 
5f2c668
 
 
 
 
37d58a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: other
license_name: codegeex4
license_link: https://huggingface.co/THUDM/codegeex4-all-9b/blob/main/LICENSE
language:
- zh
- en
tags:
- glm
- codegeex
- thudm
inference: false
pipeline_tag: text-generation
---

# CodeGeeX4: Open Multilingual Code Generation Model

[中文](./README_zh.md)

We introduce CodeGeeX4-ALL-9B, the open-source version of the latest CodeGeeX4 model series. It is a multilingual code generation model continually trained on the [GLM-4-9B](https://github.com/THUDM/GLM-4), significantly enhancing its code generation capabilities. Using a single CodeGeeX4-ALL-9B model, it can support comprehensive functions such as code completion and generation, code interpreter, web search, function call, repository-level code Q&A, covering various scenarios of software development. CodeGeeX4-ALL-9B has achieved highly competitive performance  on public benchmarks, such as [BigCodeBench](https://huggingface.co/datasets/bigcode/bigcodebench) and [NaturalCodeBench](https://github.com/THUDM/NaturalCodeBench). It is currently the most powerful code generation model with less than 10B parameters, even surpassing much larger general-purpose models, achieving the best balance in terms of inference speed and model performance.

## Get Started

Use `4.39.0<=transformers<=4.40.2` to quickly launch [codegeex4-all-9b](https://huggingface.co/THUDM/codegeex2-6b):

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex4-all-9b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    "THUDM/codegeex4-all-9b",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(device).eval()
inputs = tokenizer.apply_chat_template([{"role": "user", "content": "write a quick sort"}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ).to(device)
with torch.no_grad():
    outputs = model.generate(**inputs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Evaluation

| **Model**                   | **Seq Length** | **HumanEval** | **MBPP** | **NCB** | **LCB** | **HumanEvalFIM** | **CRUXEval-O** |
|-----------------------------|----------------|---------------|----------|---------|---------|------------------|----------------|
| Llama3-70B-intruct          | 8K             | 77.4          | 82.3     | 37.0    | 27.4    | -                | -              |
| DeepSeek Coder 33B Instruct | 16K            | 81.1          | 80.4     | 39.3    | 29.3    | 78.2             | 49.9           |
| Codestral-22B               | 32K            | 81.1          | 78.2     | 46.0    | 35.3    | 91.6             | 51.3           |
| CodeGeeX4-All-9B            | 128K           | 82.3          | 75.7     | 40.4    | 28.5    | 85.0             | 47.1           |

## License

The model weights are licensed under the following [License](./LICENSE).

## Citation

If you find our work helpful, please feel free to cite the following paper:

```
@inproceedings{zheng2023codegeex,
  title={CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Benchmarking on HumanEval-X},
  author={Qinkai Zheng and Xiao Xia and Xu Zou and Yuxiao Dong and Shan Wang and Yufei Xue and Zihan Wang and Lei Shen and Andi Wang and Yang Li and Teng Su and Zhilin Yang and Jie Tang},
  booktitle={Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages={5673--5684},
  year={2023}
}
```