SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("T-Blue/tsdae_pro_mbert")
# Run inference
sentences = [
'𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च',
' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯',
'𑀯',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 97,043 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 5.12 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 9.06 tokens
- max: 56 tokens
- Samples:
sentence_0 sentence_1 च𑀞𑀱च𑀢
च𑀞𑀱च𑀢 𑀭ठ𑀯
ठ𑀧𑀧𑁢𑀯
ठ𑀧𑀧𑁢𑀯
𑁢𑀗𑀯
𑁢𑀗𑀯
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0824 | 500 | 1.1372 |
0.1649 | 1000 | 0.8075 |
0.2473 | 1500 | 0.7708 |
0.3297 | 2000 | 0.7464 |
0.4121 | 2500 | 0.7286 |
0.4946 | 3000 | 0.7187 |
0.5770 | 3500 | 0.7089 |
0.6594 | 4000 | 0.6942 |
0.7418 | 4500 | 0.7022 |
0.8243 | 5000 | 0.6939 |
0.9067 | 5500 | 0.6859 |
0.9891 | 6000 | 0.6807 |
1.0715 | 6500 | 0.6841 |
1.1540 | 7000 | 0.6764 |
1.2364 | 7500 | 0.6705 |
1.3188 | 8000 | 0.6712 |
1.4013 | 8500 | 0.6683 |
1.4837 | 9000 | 0.6662 |
1.5661 | 9500 | 0.6635 |
1.6485 | 10000 | 0.655 |
1.7310 | 10500 | 0.6667 |
1.8134 | 11000 | 0.6533 |
1.8958 | 11500 | 0.6564 |
1.9782 | 12000 | 0.646 |
2.0607 | 12500 | 0.6522 |
2.1431 | 13000 | 0.6466 |
2.2255 | 13500 | 0.6464 |
2.3079 | 14000 | 0.647 |
2.3904 | 14500 | 0.6408 |
2.4728 | 15000 | 0.6415 |
2.5552 | 15500 | 0.6397 |
2.6377 | 16000 | 0.6303 |
2.7201 | 16500 | 0.6465 |
2.8025 | 17000 | 0.6287 |
2.8849 | 17500 | 0.6358 |
2.9674 | 18000 | 0.6247 |
3.0498 | 18500 | 0.6318 |
3.1322 | 19000 | 0.627 |
3.2146 | 19500 | 0.6222 |
3.2971 | 20000 | 0.6262 |
3.3795 | 20500 | 0.6197 |
3.4619 | 21000 | 0.6234 |
3.5443 | 21500 | 0.6193 |
3.6268 | 22000 | 0.6088 |
3.7092 | 22500 | 0.624 |
3.7916 | 23000 | 0.6089 |
3.8741 | 23500 | 0.6184 |
3.9565 | 24000 | 0.6047 |
4.0389 | 24500 | 0.6066 |
4.1213 | 25000 | 0.6082 |
4.2038 | 25500 | 0.5999 |
4.2862 | 26000 | 0.6046 |
4.3686 | 26500 | 0.6038 |
4.4510 | 27000 | 0.5978 |
4.5335 | 27500 | 0.5948 |
4.6159 | 28000 | 0.5887 |
4.6983 | 28500 | 0.6031 |
4.7807 | 29000 | 0.5823 |
4.8632 | 29500 | 0.5953 |
4.9456 | 30000 | 0.5793 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for T-Blue/tsdae_pro_mbert
Base model
google-bert/bert-base-uncased