Edit model card

Inkaso_beta

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0801
  • Creditor address: {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48}
  • Creditor name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34}
  • Creditor proxy: {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37}
  • Debtor address: {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53}
  • Debtor name: {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33}
  • Doc id: {'precision': 0.85, 'recall': 0.8947368421052632, 'f1': 0.8717948717948718, 'number': 19}
  • Title: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34}
  • Overall Precision: 0.9492
  • Overall Recall: 0.9419
  • Overall F1: 0.9455
  • Overall Accuracy: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Creditor address Creditor name Creditor proxy Debtor address Debtor name Doc id Title Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4642 6.6667 20 0.2502 {'precision': 0.782608695652174, 'recall': 0.75, 'f1': 0.7659574468085107, 'number': 48} {'precision': 0.9354838709677419, 'recall': 0.8529411764705882, 'f1': 0.8923076923076922, 'number': 34} {'precision': 0.8, 'recall': 0.6486486486486487, 'f1': 0.7164179104477612, 'number': 37} {'precision': 0.8205128205128205, 'recall': 0.6037735849056604, 'f1': 0.6956521739130435, 'number': 53} {'precision': 0.95, 'recall': 0.5757575757575758, 'f1': 0.7169811320754716, 'number': 33} {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19} {'precision': 0.8461538461538461, 'recall': 0.3235294117647059, 'f1': 0.46808510638297873, 'number': 34} 0.8478 0.6047 0.7059 0.9330
0.1387 13.3333 40 0.0914 {'precision': 1.0, 'recall': 0.9166666666666666, 'f1': 0.9565217391304348, 'number': 48} {'precision': 0.9714285714285714, 'recall': 1.0, 'f1': 0.9855072463768115, 'number': 34} {'precision': 0.7777777777777778, 'recall': 0.7567567567567568, 'f1': 0.7671232876712328, 'number': 37} {'precision': 0.9444444444444444, 'recall': 0.9622641509433962, 'f1': 0.9532710280373832, 'number': 53} {'precision': 0.8918918918918919, 'recall': 1.0, 'f1': 0.9428571428571428, 'number': 33} {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} 0.9234 0.9341 0.9287 0.9795
0.0431 20.0 60 0.0774 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} {'precision': 0.8181818181818182, 'recall': 0.7297297297297297, 'f1': 0.7714285714285715, 'number': 37} {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} {'precision': 0.7727272727272727, 'recall': 0.8947368421052632, 'f1': 0.8292682926829269, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} 0.9425 0.9535 0.9480 0.9837
0.0216 26.6667 80 0.0842 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 48} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} {'precision': 0.7631578947368421, 'recall': 0.7837837837837838, 'f1': 0.7733333333333334, 'number': 37} {'precision': 0.9454545454545454, 'recall': 0.9811320754716981, 'f1': 0.9629629629629629, 'number': 53} {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} 0.9286 0.9574 0.9427 0.9825
0.0142 33.3333 100 0.0840 {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} {'precision': 0.9629629629629629, 'recall': 0.9811320754716981, 'f1': 0.9719626168224299, 'number': 53} {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} 0.9416 0.9380 0.9398 0.9819
0.0105 40.0 120 0.0838 {'precision': 0.9772727272727273, 'recall': 0.8958333333333334, 'f1': 0.9347826086956522, 'number': 48} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 33} {'precision': 0.8095238095238095, 'recall': 0.8947368421052632, 'f1': 0.8500000000000001, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} 0.9385 0.9457 0.9421 0.9819
0.0081 46.6667 140 0.0801 {'precision': 1.0, 'recall': 0.875, 'f1': 0.9333333333333333, 'number': 48} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} {'precision': 0.8333333333333334, 'recall': 0.8108108108108109, 'f1': 0.8219178082191781, 'number': 37} {'precision': 0.9636363636363636, 'recall': 1.0, 'f1': 0.9814814814814815, 'number': 53} {'precision': 0.9428571428571428, 'recall': 1.0, 'f1': 0.9705882352941176, 'number': 33} {'precision': 0.85, 'recall': 0.8947368421052632, 'f1': 0.8717948717948718, 'number': 19} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 34} 0.9492 0.9419 0.9455 0.9831

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Szczotar93/Inkaso_beta

Finetuned
(135)
this model