See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
batch_size: 64
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
path: argilla/databricks-dolly-15k-curated-en
type:
field_input: original-instruction
field_instruction: original-instruction
field_output: original-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 0.1
flash_attention: true
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/test-repo
hub_strategy: checkpoint
learning_rate: 0.0001
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
max_steps: 160.0
micro_batch_size: 7
model_type: AutoModelForCausalLM
num_epochs: 10000
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/tmp/test-repo
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: true
save_steps: 40
save_total_limit: 1
sequence_len: 2048
tokenizer_type: Qwen2TokenizerFast
torch_dtype: bf16
training_args_kwargs:
disable_tqdm: true
hub_private_repo: true
save_only_model: true
trust_remote_code: true
val_set_size: 0.01
wandb_entity: ''
wandb_mode: online
wandb_name: peft-internal-testing/tiny-dummy-qwen2-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
test-repo
This model is a fine-tuned version of peft-internal-testing/tiny-dummy-qwen2 on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set:
- Loss: 11.9145
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 7
- eval_batch_size: 7
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 28
- total_eval_batch_size: 28
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8
- training_steps: 160
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0345 | 1 | 11.9318 |
11.9309 | 0.5517 | 16 | 11.9279 |
11.9236 | 1.1034 | 32 | 11.9212 |
11.9214 | 1.6552 | 48 | 11.9193 |
11.9198 | 2.2069 | 64 | 11.9178 |
11.9188 | 2.7586 | 80 | 11.9161 |
11.9181 | 3.3103 | 96 | 11.9151 |
11.9175 | 3.8621 | 112 | 11.9147 |
11.9174 | 4.4138 | 128 | 11.9143 |
11.917 | 4.9655 | 144 | 11.9140 |
11.9169 | 5.5172 | 160 | 11.9145 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for SystemAdmin123/test-repo
Base model
peft-internal-testing/tiny-dummy-qwen2