Uploaded model

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

1.ファインチューニングした本モデルを使用して推論するモデルとトークナイザを読み出すコードの例を以下に示します。

from unsloth import FastLanguageModel

model_name = "SusumuDou/llm-jp-3-13b-finetune-2"

max_seq_length = 2048

dtype = None

load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = HF TOKEN, )

FastLanguageModel.for_inference(model)

2.上記1の推論モデルとトークナイザを使って推論したoutput.jsonlの出力方法を以下に示します。

 モデルに推論させる入力ファイル:LLM_2024/最終課題/elyza-tasks-100-TV_0.jsonl

(1) 入力ファイルの読み込みコード

datasets = []

with open("/content/drive/MyDrive/LLM_2024/最終課題/elyza-tasks-100-TV_0.jsonl", "r") as f:

item = ""

for line in f:

  line = line.strip()

  item += line
  
  if item.endswith("}"):
  
    datasets.append(json.loads(item))
    
    item = ""
    

(2) 推論コード

from tqdm import tqdm

results = []

for dt in tqdm(datasets):

input = dt["input"]

prompt = f"""### 指示\n{input}\n### 回答\n"""

inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)

prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

(3) 推論結果output.jsonlの出力コード

with open(f"output.jsonl", 'w', encoding='utf-8') as f:

for result in results:

    json.dump(result, f, ensure_ascii=False)
    
    f.write('\n')
    
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for SusumuDou/llm-jp-3-13b-finetune-2

Finetuned
(1124)
this model