roberta-finetuned-sem_eval-english
This model is a fine-tuned version of SamLowe/roberta-base-go_emotions on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3097
- F1: 0.7207
- Roc Auc: 0.8127
- Accuracy: 0.2799
- Precision: 0.7555
- Recall: 0.6890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|---|
0.3684 | 1.0 | 855 | 0.3003 | 0.7060 | 0.7973 | 0.3070 | 0.7749 | 0.6483 |
0.2776 | 2.0 | 1710 | 0.2930 | 0.7082 | 0.7978 | 0.3025 | 0.7823 | 0.6469 |
0.2441 | 3.0 | 2565 | 0.3019 | 0.7111 | 0.8025 | 0.2968 | 0.7684 | 0.6617 |
0.2205 | 4.0 | 3420 | 0.3008 | 0.7140 | 0.8060 | 0.2698 | 0.7618 | 0.6719 |
0.2002 | 5.0 | 4275 | 0.3058 | 0.7184 | 0.8109 | 0.2709 | 0.7555 | 0.6849 |
0.1844 | 6.0 | 5130 | 0.3097 | 0.7207 | 0.8127 | 0.2799 | 0.7555 | 0.6890 |
0.1692 | 7.0 | 5985 | 0.3110 | 0.7159 | 0.8102 | 0.2709 | 0.7482 | 0.6863 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Sungjin228/roberta-finetuned-sem_eval-english
Base model
SamLowe/roberta-base-go_emotionsDataset used to train Sungjin228/roberta-finetuned-sem_eval-english
Evaluation results
- F1 on sem_eval_2018_task_1validation set self-reported0.721
- Accuracy on sem_eval_2018_task_1validation set self-reported0.280
- Precision on sem_eval_2018_task_1validation set self-reported0.755
- Recall on sem_eval_2018_task_1validation set self-reported0.689