File size: 6,265 Bytes
b9e6a80
6d88372
f2fa49e
 
b9e6a80
f2fa49e
 
 
 
 
 
 
11ed78c
 
6020295
4e0f0e6
 
 
 
 
f2fa49e
4e0f0e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e6a80
 
ba114a8
b9e6a80
f0454cb
b9e6a80
11ed78c
b9e6a80
9213c16
b9e6a80
f0454cb
b9e6a80
f2fa49e
b9e6a80
880d348
 
e608484
880d348
 
 
8d9d648
 
880d348
 
 
b9e6a80
f2fa49e
b9e6a80
f2fa49e
b9e6a80
f2fa49e
 
 
3b35e73
f2fa49e
 
 
 
 
 
 
 
b9e6a80
4e0f0e6
1b6e6ed
4e0f0e6
1b6e6ed
4e0f0e6
 
1b6e6ed
 
2ff3344
 
4e0f0e6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: apache-2.0
language:
- en
library_name: transformers
tags:
- Tulu3
- Smollm
- SLMs
- Small
- Huggingface
- Allenai
- SFT
- DPO
- GGUF
base_model:
- HuggingFaceTB/SmolLM2-1.7B
datasets:
- allenai/tulu-3-sft-mixture
- allenai/llama-3.1-tulu-3-8b-preference-mixture
pipeline_tag: text-generation
model-index:
- name: SmolTulu-1.7b-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 65.41
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 12.26
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 2.64
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.57
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.92
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 7.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
      name: Open LLM Leaderboard
---

# SmolLM2 1.7b Instruction Tuned & DPO Aligned through Tulu 3!

![SmolTulu Banner](smoltulubanner.png)

SmolTulu-v0.1 is the first model in a series of models meant to leverage [AllenAI's Tulu 3 post-training pipeline](https://allenai.org/blog/tulu-3-technical) to tune the [base version of Huggingface's SmolLM2-1.7b](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B)! The post training pipeline AllenAI came up with seemed like something perfect to apply here.

This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the SFT (supervised finetuning) and DPO (direct preference optimization) stages.

Something important to note, this model has only undergone SFT and DPO, the RLVR (reinforcement learning with verifiable rewards) stage was too computationally expensive to run properly.

# Evaluation

I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison.

| Metric | SmolTulu-1.7b-Instruct | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
|:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|
| IFEval (Average prompt/inst) | **67.7** | 56.7 | 53.5 | 47.4 | 23.1 |
| GSM8K (5-shot) | **51.6** | 48.2 | 26.8 | 42.8 | 4.6 |
| PIQA | 72.2 | **74.4** | 72.3 | 73.2 | 71.6 |
| BBH (3-shot) | 33.8 | 32.2 | 27.6 | **35.3** | 25.7 |
| ARC (Average) | 51.5 | **51.7** | 41.6 | 46.2 | 43.7 |
| HellaSwag | 61.1 | **66.1** | 56.1 | 60.9 | 55.5 |
| MMLU-Pro (MCF) | 17.4 | 19.3 | 12.7 | **24.2** | 11.7 |

# Usage

Just like any Huggingface model, just run it using the transformers library:

```python
# pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "SultanR/SmolTulu-1.7b-Instruct"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

You can also use the model in llama.cpp through the [gguf version](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct-GGUF)!

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)

Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_SultanR__SmolTulu-1.7b-Instruct)

To give a more holistic overview, I also added the Open LLM Leaderboard results, which differ a lot from the script that was used to benchmark SmolLM2-Instruct.

As of writing this, the number 1 ranking model in IFEval for any model under 2 billion parameters :)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |15.45|
|IFEval (0-Shot)    |65.41|
|BBH (3-Shot)       |12.26|
|MATH Lvl 5 (4-Shot)| 2.64|
|GPQA (0-shot)      | 2.57|
|MuSR (0-shot)      | 1.92|
|MMLU-PRO (5-shot)  | 7.89|