File size: 6,399 Bytes
b9e6a80 f2fa49e 4e0f0e6 b9e6a80 f2fa49e 11ed78c 6020295 4e0f0e6 f2fa49e 4e0f0e6 b9e6a80 ba114a8 b9e6a80 f2fa49e b9e6a80 11ed78c b9e6a80 9213c16 b9e6a80 11ed78c b9e6a80 11ed78c b9e6a80 11ed78c f2fa49e 11ed78c b9e6a80 f2fa49e b9e6a80 880d348 e608484 880d348 8d9d648 880d348 b9e6a80 f2fa49e b9e6a80 f2fa49e b9e6a80 f2fa49e 3b35e73 f2fa49e b9e6a80 4e0f0e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- Tulu3
- Smollm
- SLMs
- Small
- Huggingface
- Allenai
- SFT
- DPO
- GGUF
base_model:
- HuggingFaceTB/SmolLM2-1.7B
datasets:
- allenai/tulu-3-sft-mixture
- allenai/llama-3.1-tulu-3-8b-preference-mixture
pipeline_tag: text-generation
model-index:
- name: SmolTulu-1.7b-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 65.41
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 12.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.64
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.92
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 7.89
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SultanR/SmolTulu-1.7b-Instruct
name: Open LLM Leaderboard
---
# SmolLM2 1.7b Instruction Tuned & DPO Aligned through Tulu 3!
![SmolTulu Banner](smoltulubannerv0.png)
SmolTulu-v0.1 is the first model in a series of models meant to leverage [AllenAI's Tulu 3 post-training pipeline](https://allenai.org/blog/tulu-3-technical) to tune the [base version of Huggingface's SmolLM2-1.7b](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B)! The post training pipeline AllenAI came up with seemed like something perfect to apply here.
This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the SFT (supervised finetuning) and DPO (direct preference optimization) stages.
## Why v0.1?
There's a few reasons on why I like calling this model v0.1:
1. The model still lags behind the instruction tuned version of SmolLM2 in some other metrics.
2. This model has only undergone SFT and DPO, the RLVR (reinforcement learning with verifiable rewards) stage was too computationally expensive to run on a model that could be better.
3. Initial hyperparameter choice during training was naive, through some napkin math I've been able to find a much better learning rate that scales the one found in the Tulu 3 paper according to my computational resources better.
# Evaluation
I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison.
| Metric | SmolTulu-1.7b-Instruct | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
|:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|
| IFEval (Average prompt/inst) | **67.7** | 56.7 | 53.5 | 47.4 | 23.1 |
| GSM8K (5-shot) | **51.6** | 48.2 | 26.8 | 42.8 | 4.6 |
| PIQA | 72.2 | **74.4** | 72.3 | 73.2 | 71.6 |
| BBH (3-shot) | 33.8 | 32.2 | 27.6 | **35.3** | 25.7 |
| ARC (Average) | 51.5 | **51.7** | 41.6 | 46.2 | 43.7 |
| HellaSwag | 61.1 | **66.1** | 56.1 | 60.9 | 55.5 |
| MMLU-Pro (MCF) | 17.4 | 19.3 | 12.7 | **24.2** | 11.7 |
# Usage
Just like any Huggingface model, just run it using the transformers library:
```python
# pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "SultanR/SmolTulu-1.7b-Instruct"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
You can also use the model in llama.cpp through the [gguf version](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct-GGUF)!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_SultanR__SmolTulu-1.7b-Instruct)
| Metric |Value|
|-------------------|----:|
|Avg. |15.45|
|IFEval (0-Shot) |65.41|
|BBH (3-Shot) |12.26|
|MATH Lvl 5 (4-Shot)| 2.64|
|GPQA (0-shot) | 2.57|
|MuSR (0-shot) | 1.92|
|MMLU-PRO (5-shot) | 7.89|
|