File size: 6,074 Bytes
d0741d7 8f15f05 d0741d7 5f7d416 0bee755 907691d cb47d71 539e72c fc9641c a6be454 ab62e9c 0bee755 539e72c 346da61 d44aaeb a6be454 d44aaeb 0bee755 8f15f05 539e72c 8f15f05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- gordicaleksa/YugoGPT
- mlabonne/AlphaMonarch-7B
model-index:
- name: Tito-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.01
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
---
# Tito-7B-slerp
Tito-7B-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [gordicaleksa/YugoGPT](https://huggingface.co/gordicaleksa/YugoGPT)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: gordicaleksa/YugoGPT
layer_range: [0, 32]
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.6
dtype: bfloat16
```
## Results
Evaluations on Serbian LLM eval suite (or rather, performance and knowledge of Serbian):
| | ARC-E | ARC-C | Hellaswag | BoolQ | Winogrande | OpenbookQA | PiQA | NQ Open | TriviaQA | Avg. |
|-----------|-------|-------|-----------|-------|------------|------------|-------|---------|----------|-------|
| [Zamfir-7B](https://huggingface.co/Stopwolf/Zamfir-7B-slerp) | 51.85 | 32.25 | 46.03 | 75.59 | 62.59 | 26.00 | 66.81 | 16.09 | 36.11 | 45.92 |
| [Mustra-7B](https://huggingface.co/Stopwolf/Mustra-7B-Instruct-v0.1) | 52.95 | 33.70 | 45.89 | **77.55** | 64.17 | **30.60** | 67.25 | 15.40 | 34.84 | 46.93 |
| [Tito-7B](https://huggingface.co/Stopwolf/Tito-7B-slerp) | 55.43 | **34.73** | 48.19 | 77.37 | **65.27** | 30.00 | 67.30 | **16.7** | 35.38 | **47.82** |
| [YugoGPT](https://huggingface.co/gordicaleksa/YugoGPT) | **57.79** | **34.73** | **49.89** | 69.45 | 64.56 | 28.20 | **72.03** | 15.82 | **36.14** | 47.62 |
Here, all benchmarks were done 0-shot, on the exception of NQ Open and TriviaQA which were done in 5-shot manner, in order to be comparable to Mistral paper.
If we try to replicate OpenLLM Leaderboard results on available Serbian datasets (running an appropriate amount of shots instead of 0), we get:
| | ARC | Hellaswag | Winogrande | TruthfulQA | Avg. |
|---------|-------|-----------|------------|------------|-------|
| Tito-7B | 47.27 | - | 69.93 | **57.48** | 58.23 |
| [Perucac-7B](https://huggingface.co/Stopwolf/Perucac-7B-slerp) | **49.74** | - | **71.98** | 56.03 | **59.25** |
| YugoGPT | 44.03 | - | 70.64 | 48.06 | 54.24 |
| Llama3-8B | 42.24 | - | 61.25 | 51.08 | 51.52 |
| SambaLingo | 37.88 | - | 61.48 | 47.23 | 48.86 |
Note that YugoGPT, Llama3 and SambaLingo are all base models, unlike Tito and Perucac.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Stopwolf__Tito-7B-slerp)
| Metric |Tito | YugoGPT |
|---------------------------------|----:|--------:|
|Avg. |70.13| 57.34 |
|AI2 Reasoning Challenge (25-Shot)|68.09| 58.10 |
|HellaSwag (10-Shot) |86.38| 81.44 |
|MMLU (5-Shot) |64.01| 60.68 |
|TruthfulQA (0-shot) |57.01| 36.60 |
|Winogrande (5-shot) |81.69| 76.56 |
|GSM8k (5-shot) |63.61| 30.70 |
|