File size: 5,608 Bytes
0da8a85 8c7c0df dbe4d2e 075b393 8c7c0df 0da8a85 2678704 dbe4d2e 2678704 dbe4d2e 2678704 05532f6 2678704 dbe4d2e 014ab89 2678704 dbe4d2e 2678704 dbe4d2e 2678704 dbe4d2e 2678704 dbe4d2e 2678704 dbe4d2e 8c7c0df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
license: apache-2.0
tags:
- mergekit
- Etheria
base_model: []
model-index:
- name: Etheria-55b-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.1
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.93
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.16
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.09
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.18
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1
name: Open LLM Leaderboard
---
# Steelskull/Etheria-55b-v0.1
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/RAhrbktyyVQxOR1np-9L2.png)
## Merge Details
An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models.
due to the merge it 'theoretically' should have a context of 200k but I recommend starting at 32k and moveing up,
as it is unknown (at this time) what the merge has done to the context length.
This is a merge of both VerA and VerB of Etheria-55b (There numbers were surprisingly good), I then created a sacrificial 55B out of the most performant yi-34b-200k Model
and performed a Dare_ties merge and equalize the model into its current state.
### recommended settings and Prompt Format:
Ive tested it up to 32k context using exl2 using these settings:
```
"temp": 0.7,
"temperature_last": true,
"top_p": 1,
"top_k": 0,
"top_a": 0,
"tfs": 1,
"epsilon_cutoff": 0,
"eta_cutoff": 0,
"typical_p": 1,
"min_p": 0.1,
"rep_pen": 1.1,
"rep_pen_range": 8192,
"no_repeat_ngram_size": 0,
"penalty_alpha": 0,
"num_beams": 1,
"length_penalty": 1,
"min_length": 0,
"encoder_rep_pen": 1,
"freq_pen": 0,
"presence_pen": 0,
"do_sample": true,
"early_stopping": false,
"add_bos_token": false,
"truncation_length": 2048,
"ban_eos_token": true,
"skip_special_tokens": true,
"streaming": true,
"mirostat_mode": 0,
"mirostat_tau": 5,
"mirostat_eta": 0.1,
```
Prompt format that work well
```
ChatML & Alpaca
```
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using Merged-Etheria-55b as a base.
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: Merged-Etheria-55b
models:
- model: Sacr-Etheria-55b
parameters:
weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113]
density: 0.61
- model: Merged-Etheria-55b
parameters:
weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113]
density: 0.61
merge_method: dare_ties
tokenizer_source: union
parameters:
int8_mask: true
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Etheria-55b-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.69|
|AI2 Reasoning Challenge (25-Shot)|65.10|
|HellaSwag (10-Shot) |81.93|
|MMLU (5-Shot) |73.66|
|TruthfulQA (0-shot) |56.16|
|Winogrande (5-shot) |76.09|
|GSM8k (5-shot) |35.18|
|