File size: 3,087 Bytes
68677a4 511bef8 c362d01 68677a4 511bef8 68677a4 c362d01 68677a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
from typing import Dict, List, Any
from transformers import pipeline
from PIL import Image
import requests
from transformers import AutoModelForCausalLM, LlamaTokenizer
import torch
# from accelerate import (
# init_empty_weights,
# infer_auto_device_map,
# load_checkpoint_and_dispatch,
# )
import os
import logging
# from transformers import logging as hf_logging
# hf_logging.set_verbosity_debug()
logging.basicConfig(level=logging.INFO)
class EndpointHandler:
def __init__(self, path=""):
self.tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-7b-v1.5")
self.model = (
AutoModelForCausalLM.from_pretrained(
"THUDM/cogvlm-grounding-generalist-hf",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
)
.to("cuda")
.eval()
)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
query = data["inputs"]
img_uri = data["img_uri"]
image = Image.open(
requests.get(
img_uri,
stream=True,
).raw
).convert("RGB")
inputs = self.model.build_conversation_input_ids(
self.tokenizer, query=query, images=[image]
)
inputs = {
"input_ids": inputs["input_ids"].unsqueeze(0).to("cuda"),
"token_type_ids": inputs["token_type_ids"].unsqueeze(0).to("cuda"),
"attention_mask": inputs["attention_mask"].unsqueeze(0).to("cuda"),
"images": [[inputs["images"][0].to("cuda").to(torch.bfloat16)]],
}
gen_kwargs = {"max_length": 2048, "do_sample": False}
with torch.no_grad():
outputs = self.model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs["input_ids"].shape[1] :]
result = self.tokenizer.decode(outputs[0])
return result
# query = "How many houses are there in this cartoon?"
# image = Image.open(
# requests.get(
# "https://github.com/THUDM/CogVLM/blob/main/examples/3.jpg?raw=true", stream=True
# ).raw
# ).convert("RGB")
# inputs = model.build_conversation_input_ids(
# tokenizer, query=query, history=[], images=[image], template_version="vqa"
# ) # vqa mode
# inputs = {
# "input_ids": inputs["input_ids"].unsqueeze(0).to("cuda"),
# "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to("cuda"),
# "attention_mask": inputs["attention_mask"].unsqueeze(0).to("cuda"),
# "images": [[inputs["images"][0].to("cuda").to(torch.bfloat16)]],
# }
# gen_kwargs = {"max_length": 2048, "do_sample": False}
# with torch.no_grad():
# outputs = model.generate(**inputs, **gen_kwargs)
# outputs = outputs[:, inputs["input_ids"].shape[1] :]
# print(tokenizer.decode(outputs[0]))
|