File size: 1,695 Bytes
6eddb21
 
 
 
 
 
3c013cb
6eddb21
 
 
 
 
 
3c013cb
6eddb21
3c013cb
6eddb21
 
 
3c013cb
6eddb21
3c013cb
6eddb21
 
 
9af24ea
6eddb21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: llama2
base_model: StanfordAIMI/RadLLaMA-7b
tags:
- generated_from_trainer
model-index:
- name: GREEN
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# StanfordAIMI/GREEN

This model is a fine-tuned version of [StanfordAIMI/RadLLaMA-7b](https://huggingface.co/StanfordAIMI/RadLLaMA-7b).
It achieves the following results on the evaluation set:
- Loss: 0.0644

## Model description and Training procedure

Please see the project website at https://stanford-aimi.github.io/green.html.

## Intended uses & limitations

This model is finetuned to evaluate the difference between the reference and candidate radiology report for Chest Xrays.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 2048
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2634        | 0.64  | 25   | 0.2924          |
| 0.1216        | 1.28  | 50   | 0.0898          |
| 0.0833        | 1.92  | 75   | 0.0718          |
| 0.062         | 2.56  | 100  | 0.0644          |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1