File size: 1,695 Bytes
6eddb21 3c013cb 6eddb21 3c013cb 6eddb21 3c013cb 6eddb21 3c013cb 6eddb21 3c013cb 6eddb21 9af24ea 6eddb21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: llama2
base_model: StanfordAIMI/RadLLaMA-7b
tags:
- generated_from_trainer
model-index:
- name: GREEN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# StanfordAIMI/GREEN
This model is a fine-tuned version of [StanfordAIMI/RadLLaMA-7b](https://huggingface.co/StanfordAIMI/RadLLaMA-7b).
It achieves the following results on the evaluation set:
- Loss: 0.0644
## Model description and Training procedure
Please see the project website at https://stanford-aimi.github.io/green.html.
## Intended uses & limitations
This model is finetuned to evaluate the difference between the reference and candidate radiology report for Chest Xrays.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 2048
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2634 | 0.64 | 25 | 0.2924 |
| 0.1216 | 1.28 | 50 | 0.0898 |
| 0.0833 | 1.92 | 75 | 0.0718 |
| 0.062 | 2.56 | 100 | 0.0644 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|