texify-fp16-onnx

https://huggingface.co/vikp/texify with fp16 ONNX weights, shoutout to https://huggingface.co/Xenova/texify

Usage (optimum[onnxruntime])

If you haven't already, you can install the optimum with the onnxrumtime backend

pip install "optimum[onnxruntime-gpu]"

Example:

from optimum.onnxruntime import ORTModelForVision2Seq
from optimum.pipelines import pipeline

model = ORTModelForVision2Seq.from_pretrained("Spedon/texify-fp16-onnx", provider="CUDAExecutionProvider")
texify = pipeline(
    "image-to-text",
    model,
    feature_extractor="Spedon/texify-fp16-onnx",
    image_processor="Spedon/texify-fp16-onnx",
)
image = (
    "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/latex.png"
)
latex = texify(image, max_new_tokens=384)
print(latex)
# [{'generated_text': "The potential $V_i$ of cell $\\mathcal{C}_i$ centred at position $\\mathbf{r}_i$ is related to the surface charge densities $\\sigma_j$ of cells $\\mathcal{C}_j$ $j\\in[1,N]$ through the superposition principle as: $$V_i\\,=\\,\\sum_{j=0}^{N}\\,\\frac{\\sigma_j}{4\\pi\\varepsilon_0}\\,\\int_{\\mathcal{C}_j}\\frac{1}{\\|\\mathbf{r}_i-\\mathbf{r}'\\|}\\,\\mathrm{d}^2\\mathbf{r}'\\,=\\,\\sum_{j=0}^{N}\\,Q_{ij}\\,\\sigma_j,$$ where the integral over the surface of cell $\\mathcal{C}_j$ only depends on $\\mathcal{C}_j$ shape and on the relative position of the target point $\\mathbf{r}_i$ with respect to $\\mathcal{C}_j$ location, as $\\sigma_j$ is assumed constant over the whole surface of cell $\\mathcal{C}_j$. "}]
Input image Visualized output
image/png image/png
Downloads last month
22
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Spedon/texify-fp16-onnx

Base model

vikp/texify
Quantized
(3)
this model