Doge 320M Instruct SFT

SmallDoge

Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by SmallDoge community, for detailed algorithm and model architecture, paper coming soon, all training details and code are available in the small-doge repository.

Uses

from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct-SFT")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-320M-Instruct-SFT", trust_remote_code=True)

generation_config = GenerationConfig(
      max_new_tokens=100, 
      use_cache=True, 
      do_sample=True, 
      temperature=0.8, 
      top_p=0.9,
      repetition_penalty=1.0
)
steamer = TextStreamer(
      tokenizer=tokenizer, 
      skip_prompt=True
)

prompt = "Hi, how are you doing today?"
conversation = [
      {"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
    conversation=conversation,
    tokenize=True,
    return_tensors="pt",
)

outputs = model.generate(
    inputs, 
    tokenizer=tokenizer,
    generation_config=generation_config, 
    streamer=steamer
)

Model Details

We build the Doge-Instruct-SFT by SFT on SmolTalk.

SFT:

Model Training Data Epochs Content Length LR Batch Size Precision
Doge-20M-Instruct-SFT smoltalk 2 2048 8e-4 0.25M bfloat16
Doge-60M-Instruct-SFT smoltalk 2 2048 6e-4 0.25M bfloat16
Doge-160M-Instruct-SFT smoltalk 2 2048 4e-4 0.25M bfloat16
Doge-320M-Instruct-SFT smoltalk 2 2048 2e-4 0.25M bfloat16

Procedure:

SFT: Visualize in Weights & Biases

Environment:

  • Image: nvcr.io/nvidia/pytorch:24.12-py3
  • Hardware: 1x NVIDIA RTX 4090
  • Software: Transformers, TRL

Citation

@misc{smalldoges,
  title={SmallDoges: A Family of Dynamic UltraFast Small Language Models}, 
  author={Jingze, Shi and Yifan, Wu and Bingheng, Wu and Yuyu, Luo},
  year={2025},
  month={March},
  url={https://github.com/SmallDoges/small-doge}
}
Downloads last month
6
Safetensors
Model size
336M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for SmallDoge/Doge-320M-Instruct-SFT

Finetuned
(2)
this model

Dataset used to train SmallDoge/Doge-320M-Instruct-SFT

Collection including SmallDoge/Doge-320M-Instruct-SFT