File size: 18,709 Bytes
ad7d40d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import os
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging, to_py_obj
from transformers.tokenization_utils_base import BatchEncoding
import bisect
import itertools
import re
import unicodedata
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple, Union, overload
from transformers.tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
INIT_TOKENIZER_DOCSTRING,
AddedToken,
BatchEncoding,
EncodedInput,
EncodedInputPair,
PreTokenizedInput,
PreTokenizedInputPair,
PreTrainedTokenizerBase,
TextInput,
TextInputPair,
TruncationStrategy,
)
from transformers.utils import PaddingStrategy, TensorType, add_end_docstrings, logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
}
class DATrie:
class Node:
def __init__(self, is_leaf=False, leaf_data=None, tail=""):
self._is_leaf = is_leaf
self._leaf_data = leaf_data
self._tail = tail
self._next_map = {}
def is_leaf(self):
return self._is_leaf
def set_leaf(self):
self._is_leaf = True
def has_next(self, w):
if w in self._next_map:
return True
return False
def add_node(self, w, node):
self._next_map[w] = node
def get_node(self, w):
if w in self._next_map:
return self._next_map[w]
return None
def get_tail(self):
return self._tail
def get_data(self):
return self._leaf_data
def set_data(self, data):
self._leaf_data = data
def __init__(self):
self.root = self.Node()
self.data = {}
self.r_data = {}
pass
def insert(self, word, data):
self.data[word] = data
self.r_data[data] = word
idx = 0
node = self.root
while idx < len(word):
w = word[idx]
is_leaf = (idx == (len(word) - 1))
leaf_data = (data if is_leaf else None)
# 不存在则插入
if not node.has_next(w):
node.add_node(w, self.Node(is_leaf=is_leaf, leaf_data=leaf_data))
# last word
node = node.get_node(w)
idx += 1
if not node.is_leaf():
node.set_leaf()
node.set_data(data)
def findStrict(self, word):
idx = 0
node = self.root
while node is not None and idx < len(word):
w = word[idx]
if not node.has_next(w):
return None
# last word
node = node.get_node(w)
idx += 1
if node.is_leaf():
return node.get_data()
return None
def prefix(self, word):
idx = 0
node = self.root
result = []
while node is not None and idx < len(word):
w = word[idx]
if not node.has_next(w):
return result
# last word
node = node.get_node(w)
if node.is_leaf():
result.append([word[:idx + 1], node.get_data()])
idx += 1
return result
def max_prefix(self, content, start_idx):
idx = start_idx
node = self.root
l = len(content)
result = [["", ], ]
while node is not None and idx < l:
w = content[idx]
if not node.has_next(w):
return result[-1]
# last word
node = node.get_node(w)
if node.is_leaf():
result.append([content[start_idx:idx + 1], node.get_data()])
idx += 1
return result[-1]
def max_score(self, content, start_idx):
idx = start_idx
node = self.root
l = len(content)
result = [["", (3, 0)], ]
while node is not None and idx < l:
w = content[idx]
if not node.has_next(w):
break
# last word
node = node.get_node(w)
if node.is_leaf():
result.append([content[start_idx:idx + 1], node.get_data()])
idx += 1
if len(result) > 1:
result = sorted(result, key=lambda x: x[1][1])
return result[-1]
def match(self, content, add_unk=True, unk_id=-1, **kwargs):
# length
l = len(content)
i = 0
result_list = []
while i < l:
match_word = self.max_prefix(content=content, start_idx=i)
# print(match_word)
w = match_word[0]
if len(w) > 0:
result_list.append(match_word[1])
i += len(w)
else:
if add_unk:
result_list.append(unk_id)
i += 1
return result_list
def id2str(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
res_str = ""
for rid in ids:
if rid in self.r_data:
if rid in end_ids:
break
rstr = self.r_data[rid]
if escape_special_ids is True:
if rstr.startswith("[") and rstr.endswith("]") \
and rstr.upper() == rstr:
continue
res_str += rstr
else:
print("ERROR unknown id %d" % rid)
return res_str
def id2str_v2(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
res_str = ""
for rid in ids:
if rid in self.r_data:
if rid in end_ids:
break
rstr = self.r_data[rid]
if escape_special_ids is True:
if rstr.startswith("[") and rstr.endswith("]") \
and rstr.upper() == rstr:
break
res_str += rstr
else:
print("ERROR unknown id %d" % rid)
return res_str
class SkyTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
errors="replace",
unk_token="[UNK]",
bos_token="[BOS]",
eos_token="[EOS]",
pad_token="[PAD]",
add_bos_token=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
**kwargs,
)
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.trie = DATrie()
for k, v in self.encoder.items():
self.trie.insert(k, v)
self.errors = errors # how to handle errors in decoding
self.cache = {}
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is None:
return output
return output + bos_token_ids + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
def _tokenize(self, text, **kwargs):
"""Tokenize a string."""
return self.trie.match(text, unk_id=self.unk_token_id, **kwargs)
def _decode(self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
**kwargs
) -> str:
# Convert inputs to python lists
token_ids = to_py_obj(token_ids)
if isinstance(token_ids, int):
return self.decoder.get(token_ids, self.unk_token)
elif isinstance(token_ids, list):
return self.trie.id2str(
token_ids,
escape_special_ids=skip_special_tokens,
**kwargs
)
else:
return token_ids
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.exists(save_directory):
os.mkdir(save_directory)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
def prepare_for_tokenization(self, text, **kwargs):
return (text, kwargs)
def _encode_plus(
self,
text: Union[TextInput, EncodedInput],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
text_id = self.trie.match(text, unk_id=self.unk_token_id)
return text_id
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
first_ids = get_input_ids(text)
return self.prepare_for_model(
first_ids,
pair_ids=None,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[EncodedInput],
],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
text_id = self.trie.match(text, unk_id=self.unk_token_id)
return text_id
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
input_ids = []
for ids_or_pair_ids in batch_text_or_text_pairs:
if not isinstance(ids_or_pair_ids, (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
else:
ids, pair_ids = ids_or_pair_ids
first_ids = get_input_ids(ids)
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
input_ids.append((first_ids, second_ids))
batch_outputs = self._batch_prepare_for_model(
input_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length:]
return input_ids
|