File size: 16,120 Bytes
5729c64 1601c6c 5729c64 1601c6c 5729c64 1601c6c 5729c64 1601c6c 5729c64 1601c6c 5729c64 1601c6c 5729c64 1601c6c 5729c64 1601c6c 5729c64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3111af73b0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3111af7440>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3111af74d0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3111af7560>",
"_build": "<function ActorCriticPolicy._build at 0x7f3111af75f0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f3111af7680>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3111af7710>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f3111af77a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3111af7830>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3111af78c0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3111af7950>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f3111b31de0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float32",
"_shape": [
24
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"_shape": [
4
],
"low": "[-1. -1. -1. -1.]",
"high": "[1. 1. 1. 1.]",
"bounded_below": "[ True True True True]",
"bounded_above": "[ True True True True]",
"_np_random": null
},
"n_envs": 8,
"num_timesteps": 10010624,
"_total_timesteps": 10000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652339747.5723894,
"learning_rate": 0.0001,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAEYCD71qqKq5/jWsO4RC+7lkcVW/9AKlOR7OnT5FDFm9AAAAAO0rjj8AzVu3Ck9nPwvYpbkAAIA/6mVPPuDAUT4kGFk+9FNmPhdKez7CuY0+erQJP4m1+D7eFg8/+mJwPyjBoL0oPcq3Fz7VOOO8/LeNvFW/2KyGNypJtT5lpaK9AAAAALBEkT8A/jS1GvxoP43MG7gAAIA/7wtIPoVRSj4sZlE+5ilePtNhcj60s4g+IvvoPsGHET8AAIA/AACAP4q6qz1gr/E5CJy+ujx1UTpcSlS/RkLjOuhwZT7/w2q8AACAP+/Rjj+gLa248KNqPx9DjrsAAAAA5S1jPl3CZT7ezG0+zUt8PuCgiT47Pps+Dby2PsxJ5D65pQQ/ymr9PiG3rz1z3HC5ne5SPFt71Lp6vFW/zqblumDn7TzxgXS9AAAAALN8jj+glog4+GpsP/yWbTsAAAAAzQpiPvebZD4qnGw+hgh7PofwiD5Qd5o+6NG1Pkkl4z7LMhM/gE49Pz1lsL1M8jM3DDQ5uI9OZTd6vFW/KKEDt/4yhT5QHa08AAAAAKREkT8AEa00uGxuP0WIqTcAAAAArVtGPlucSD61oU8+2UlcPhdWcD5SjIc+cZ/nPpGuED8AAIA/AACAP9W0hT0tCnG5dvVANo0ORTnWN1O/0Er6uJDTXD7pkVk8AAAAALQMkT9AEaw3qIFuPwdCszoAAAAAx8BgPjFOYz62Qms+A5p5PpgoiD7KlZk+csi0PqbZ4T6cPew++eF7P11SpD2Gqbw5mxNnulHfkLpca0+/85WEuoyRVj6fiLK7AACAPxlhjT8Aqt82+k5vP7+DNLoAAAAASYhlPpgjaD5sQ3A+yuh+PtANiz7g2Zw+l6C4PiGn5j7mteI+d4/YPpKEAr2s39q5hqaQO4StRbqKqVW/sBgtugxxkD746Au9AAAAAF+6jT8A6Pw3/r5uP/+PQjoAAIA/cL5PPmgaUj7OdFk+Q7ZmPlm1ez5A9o0+7bYLP7BW/D7xUw8/K89rP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsYhpSMAUOUdJRSlC4="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0010623999999999079,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvmw7bY2YGUCUhpRSlIwBbJRN0AeMAXSUR0DIpHuGmDUWdX2UKGgGaAloD0MIhIQoX9CCF0CUhpRSlGgVTdAHaBZHQMilF05dWyV1fZQoaAZoCWgPQwhcyY6NQGwUQJSGlFKUaBVN0AdoFkdAyKqzzDn/1nV9lChoBmgJaA9DCIHrihnhnRVAlIaUUpRoFU3QB2gWR0DIq6FnmJWOdX2UKGgGaAloD0MIsOYAwRx9AUCUhpRSlGgVTdAHaBZHQMir7SeZof11fZQoaAZoCWgPQwgoDqDf918QQJSGlFKUaBVN0AdoFkdAyK083HaN/HV9lChoBmgJaA9DCN1fPe5bDRJAlIaUUpRoFU3QB2gWR0DIrWAJu2qldX2UKGgGaAloD0MI0ZMyqaENAUCUhpRSlGgVTdAHaBZHQMiuLJd8iOh1fZQoaAZoCWgPQwj9T/7uHTUEQJSGlFKUaBVN0AdoFkdAyK47p/wy7HV9lChoBmgJaA9DCIbijjf5Lfs/lIaUUpRoFU3QB2gWR0DIrt63qiXZdX2UKGgGaAloD0MINSbEXFI1AUCUhpRSlGgVTdAHaBZHQMivNNvn8sN1fZQoaAZoCWgPQwhlVu9wO1QSQJSGlFKUaBVN0AdoFkdAyLVX6QeV9nV9lChoBmgJaA9DCHf1KjI6gBhAlIaUUpRoFU3QB2gWR0DItaBbOeJ6dX2UKGgGaAloD0MIyXISSl+I/z+UhpRSlGgVTdAHaBZHQMi244VARkF1fZQoaAZoCWgPQwg9uaZAZqf8P5SGlFKUaBVN0AdoFkdAyLcGFpPAPHV9lChoBmgJaA9DCNe/6zNnLSJAlIaUUpRoFU3QB2gWR0DIt88z9CNTdX2UKGgGaAloD0MIaw2l9iLa7T+UhpRSlGgVTdAHaBZHQMi33+6iCat1fZQoaAZoCWgPQwiaC1wea8b7P5SGlFKUaBVN0AdoFkdAyLh4iVSn+HV9lChoBmgJaA9DCEzdlV0wOB5AlIaUUpRoFU3QB2gWR0DIuMidvsJIdX2UKGgGaAloD0MIxouFIXL6A0CUhpRSlGgVTdAHaBZHQMi+1yc0+C91fZQoaAZoCWgPQwg2WaMeoiEbQJSGlFKUaBVN0AdoFkdAyL8ctpVS43V9lChoBmgJaA9DCHWOAdnr3QRAlIaUUpRoFU3QB2gWR0DIwFv27FsIdX2UKGgGaAloD0MIYLAbti3qHECUhpRSlGgVTdAHaBZHQMjAfvsZ5zJ1fZQoaAZoCWgPQwiu9UVCW84FQJSGlFKUaBVN0AdoFkdAyMFM5p8F6nV9lChoBmgJaA9DCH8vhQfNXhNAlIaUUpRoFU3QB2gWR0DIwVwYcebNdX2UKGgGaAloD0MIcHuCxHY/IECUhpRSlGgVTdAHaBZHQMjB8hIOH311fZQoaAZoCWgPQwgy5xn7kr0cQJSGlFKUaBVN0AdoFkdAyMJKKVpsXXV9lChoBmgJaA9DCG0csRafsh5AlIaUUpRoFU3QB2gWR0DIyIX2Xb/PdX2UKGgGaAloD0MIvLILBtc8BkCUhpRSlGgVTdAHaBZHQMjIzUYKpkx1fZQoaAZoCWgPQwgLYTWWsKYiQJSGlFKUaBVN0AdoFkdAyMoQsU7CBXV9lChoBmgJaA9DCIf9nlinqh5AlIaUUpRoFU3QB2gWR0DIyjOvpyIYdX2UKGgGaAloD0MInDBhNCvrFUCUhpRSlGgVTdAHaBZHQMjLBS8zyjJ1fZQoaAZoCWgPQwiRtvEnKvMgQJSGlFKUaBVN0AdoFkdAyMsTlpXZG3V9lChoBmgJaA9DCB1XI7vSYhVAlIaUUpRoFU3QB2gWR0DIy6rz3AVPdX2UKGgGaAloD0MIHxK+9zc4HUCUhpRSlGgVTdAHaBZHQMjMBwA2hqV1fZQoaAZoCWgPQwhZT62+uqr/P5SGlFKUaBVN0AdoFkdAyNIfW07bL3V9lChoBmgJaA9DCOxtMxXi8RdAlIaUUpRoFU3QB2gWR0DI0maml67edX2UKGgGaAloD0MIM4gP7PhfHkCUhpRSlGgVTdAHaBZHQMjTrr2HtWx1fZQoaAZoCWgPQwgMWd3qOfkSQJSGlFKUaBVN0AdoFkdAyNPSswtap3V9lChoBmgJaA9DCG3F/rJ7AhdAlIaUUpRoFU3QB2gWR0DI1J2+AVfvdX2UKGgGaAloD0MI8umxLQPmIECUhpRSlGgVTdAHaBZHQMjUrGm+Cbt1fZQoaAZoCWgPQwg4Sl6dY6ADQJSGlFKUaBVN0AdoFkdAyNVBfdhy83V9lChoBmgJaA9DCO23dqIkJAVAlIaUUpRoFU3QB2gWR0DI1ZHoxHoYdX2UKGgGaAloD0MIkiIyrOJ9G0CUhpRSlGgVTdAHaBZHQMjboTb349J1fZQoaAZoCWgPQwjedMsO8XcjQJSGlFKUaBVN0AdoFkdAyNvl0YCQtHV9lChoBmgJaA9DCLsp5bUSGghAlIaUUpRoFU3QB2gWR0DI3SOiDdxidX2UKGgGaAloD0MIf4gNFk6yDUCUhpRSlGgVTdAHaBZHQMjdRjLKV6h1fZQoaAZoCWgPQwikq3R3nc0hQJSGlFKUaBVN0AdoFkdAyN4O3b212XV9lChoBmgJaA9DCED5u3fU+AVAlIaUUpRoFU3QB2gWR0DI3h1+mWMTdX2UKGgGaAloD0MI3lUPmIecEUCUhpRSlGgVTdAHaBZHQMjesje0ojR1fZQoaAZoCWgPQwjN6bKY2PzzP5SGlFKUaBVN0AdoFkdAyN8EyYXwb3V9lChoBmgJaA9DCBPvAE9aiB9AlIaUUpRoFU3QB2gWR0DI5SUmY0EYdX2UKGgGaAloD0MIAb7bvHGSH0CUhpRSlGgVTdAHaBZHQMjlayiudPN1fZQoaAZoCWgPQwjzWDMyyI0UQJSGlFKUaBVN0AdoFkdAyOa4dxyXD3V9lChoBmgJaA9DCGa/7nTnuR1AlIaUUpRoFU3QB2gWR0DI5txjJ+2FdX2UKGgGaAloD0MIVTGVfsK5FECUhpRSlGgVTdAHaBZHQMjns9znzQN1fZQoaAZoCWgPQwiopiTrcKQSQJSGlFKUaBVN0AdoFkdAyOfC0KJEY3V9lChoBmgJaA9DCLyQDg9h/Ps/lIaUUpRoFU3QB2gWR0DI6Fik/KQrdX2UKGgGaAloD0MILj2a6smcHUCUhpRSlGgVTdAHaBZHQMjoqeZgG8p1fZQoaAZoCWgPQwjG/NzQlM0SQJSGlFKUaBVN0AdoFkdAyO7JECvHLnV9lChoBmgJaA9DCMoWSbvRZyNAlIaUUpRoFU3QB2gWR0DI7xFfTkQxdX2UKGgGaAloD0MIgUI9fQReH0CUhpRSlGgVTdAHaBZHQMjwYNlI3BJ1fZQoaAZoCWgPQwiIZMix9ewGQJSGlFKUaBVN0AdoFkdAyPCFIV/MGHV9lChoBmgJaA9DCMLbgxCQ7/o/lIaUUpRoFU3QB2gWR0DI8VGvpyIYdX2UKGgGaAloD0MI5gXYR6eOAUCUhpRSlGgVTdAHaBZHQMjxYFlbu+h1fZQoaAZoCWgPQwiqudxgqKMkQJSGlFKUaBVN0AdoFkdAyPH/LDhtL3V9lChoBmgJaA9DCNXt7CsPUh1AlIaUUpRoFU3QB2gWR0DI8lI1He7+dX2UKGgGaAloD0MI7Q+U2/b9HUCUhpRSlGgVTdAHaBZHQMj4egiml691fZQoaAZoCWgPQwhQOpFgqokUQJSGlFKUaBVN0AdoFkdAyPjDP8hs7HV9lChoBmgJaA9DCFR0JJf/0Pw/lIaUUpRoFU3QB2gWR0DI+gPb9If9dX2UKGgGaAloD0MIRnpRu19FHkCUhpRSlGgVTdAHaBZHQMj6JppFkQR1fZQoaAZoCWgPQwjL+PcZFx4cQJSGlFKUaBVN0AdoFkdAyPsDAGjbjHV9lChoBmgJaA9DCPEO8KSFSwJAlIaUUpRoFU3QB2gWR0DI+xPjKgZkdX2UKGgGaAloD0MIcr9DUaBfGkCUhpRSlGgVTdAHaBZHQMj7rShrWRR1fZQoaAZoCWgPQwh/iXjr/Bv4P5SGlFKUaBVN0AdoFkdAyPwAi5/b03V9lChoBmgJaA9DCAJIbeLkXhpAlIaUUpRoFU3QB2gWR0DJAhcSPEKmdX2UKGgGaAloD0MI3zMSoRHcHkCUhpRSlGgVTdAHaBZHQMkCXvFWGRF1fZQoaAZoCWgPQwjVsUrpma4SQJSGlFKUaBVN0AdoFkdAyQOlk5p8GHV9lChoBmgJaA9DCPiMRGgE+yJAlIaUUpRoFU3QB2gWR0DJA8hyGSIQdX2UKGgGaAloD0MI4J18emzL/j+UhpRSlGgVTdAHaBZHQMkElOqFRHh1fZQoaAZoCWgPQwjzzMth950BQJSGlFKUaBVN0AdoFkdAyQSj3IuGsXV9lChoBmgJaA9DCDjAzHfwAxFAlIaUUpRoFU3QB2gWR0DJBT4qkM1CdX2UKGgGaAloD0MIlxsMdViZI0CUhpRSlGgVTdAHaBZHQMkFloTwlSl1fZQoaAZoCWgPQwgW2jnNAk0GQJSGlFKUaBVN0AdoFkdAyQZ94W1twnV9lChoBmgJaA9DCN2zrtFy8CNAlIaUUpRoFU3QB2gWR0DJC/j0nPVvdX2UKGgGaAloD0MIs0EmGTmbEUCUhpRSlGgVTdAHaBZHQMkNUE/B3zN1fZQoaAZoCWgPQwixTpXvGSkeQJSGlFKUaBVN0AdoFkdAyQ10vZAY53V9lChoBmgJaA9DCEiKyLCKRx1AlIaUUpRoFU3QB2gWR0DJDkEnssxxdX2UKGgGaAloD0MIA5Xx7zOu+z+UhpRSlGgVTdAHaBZHQMkOUAMc6vJ1fZQoaAZoCWgPQwiTOZZ31ZMSQJSGlFKUaBVN0AdoFkdAyQ7s0u14PnV9lChoBmgJaA9DCOF86liltBZAlIaUUpRoFU3QB2gWR0DJDz0+V1OkdX2UKGgGaAloD0MILGFtjJ1wH0CUhpRSlGgVTdAHaBZHQMkQIAXEZR91fZQoaAZoCWgPQwit9xvtuJEgQJSGlFKUaBVN0AdoFkdAyRV7xzaK13V9lChoBmgJaA9DCIeHMH4azyNAlIaUUpRoFU3QB2gWR0DJFsDTpgTidX2UKGgGaAloD0MIXr71Yb0BGUCUhpRSlGgVTdAHaBZHQMkW5Aq3Eyd1fZQoaAZoCWgPQwg1Cd6QRoXzP5SGlFKUaBVN0AdoFkdAyRewBRQ793V9lChoBmgJaA9DCJuSrMPRFSJAlIaUUpRoFU3QB2gWR0DJF7+pyZKGdX2UKGgGaAloD0MIbf/KSpPyGkCUhpRSlGgVTdAHaBZHQMkYVprULD11fZQoaAZoCWgPQwjekhywqykeQJSGlFKUaBVN0AdoFkdAyRir1ie/YnV9lChoBmgJaA9DCEsjZvZ5HBtAlIaUUpRoFU3QB2gWR0DJGY93fQ8fdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 9776,
"n_steps": 2048,
"gamma": 0.999,
"gae_lambda": 0.95,
"ent_coef": 0.001,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 128,
"n_epochs": 16,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |