File size: 3,181 Bytes
339a64c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import fairseq
import soundfile as sf
import torch
import torch.nn.functional as F
from feature_utils import get_path_iterator, dump_feature
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("dump_w2v2_feature")
class Wav2Vec2FeatureReader(object):
def __init__(self, ckpt_path, layer, max_chunk=1600000):
(
model,
cfg,
task,
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
self.model = model[0].eval().cuda()
self.task = task
self.layer = layer # assume this is 1-based like HuBERT
self.max_chunk = max_chunk
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
logger.info(f" max_chunk = {self.max_chunk}")
logger.info(f" model:\n{self.model}")
def read_audio(self, path, ref_len=None):
wav, sr = sf.read(path)
assert sr == self.task.cfg.sample_rate, sr
if wav.ndim == 2:
wav = wav.mean(-1)
assert wav.ndim == 1, wav.ndim
if ref_len is not None and abs(ref_len - len(wav)) > 160:
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
return wav
def get_feats(self, path, ref_len=None):
x = self.read_audio(path, ref_len)
with torch.no_grad():
x = torch.from_numpy(x).float().cuda()
if self.task.cfg.normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start: start + self.max_chunk]
res = self.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
)
feat_chunk = res["x"]
feat.append(feat_chunk)
return torch.cat(feat, 1).squeeze(0)
def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk):
reader = Wav2Vec2FeatureReader(ckpt_path, layer, max_chunk)
generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("tsv_dir")
parser.add_argument("split")
parser.add_argument("ckpt_path")
parser.add_argument("layer", type=int)
parser.add_argument("nshard", type=int)
parser.add_argument("rank", type=int)
parser.add_argument("feat_dir")
parser.add_argument("--max_chunk", type=int, default=1600000)
args = parser.parse_args()
logger.info(args)
main(**vars(args))
|