ShiromiyaGamer
commited on
Commit
•
339a64c
1
Parent(s):
682794f
Upload dump_w2v2_feature.py
Browse files- dump_w2v2_feature.py +94 -0
dump_w2v2_feature.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import fairseq
|
11 |
+
import soundfile as sf
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from feature_utils import get_path_iterator, dump_feature
|
16 |
+
|
17 |
+
|
18 |
+
logging.basicConfig(
|
19 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
20 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
21 |
+
level=os.environ.get("LOGLEVEL", "INFO").upper(),
|
22 |
+
stream=sys.stdout,
|
23 |
+
)
|
24 |
+
logger = logging.getLogger("dump_w2v2_feature")
|
25 |
+
|
26 |
+
|
27 |
+
class Wav2Vec2FeatureReader(object):
|
28 |
+
def __init__(self, ckpt_path, layer, max_chunk=1600000):
|
29 |
+
(
|
30 |
+
model,
|
31 |
+
cfg,
|
32 |
+
task,
|
33 |
+
) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
34 |
+
self.model = model[0].eval().cuda()
|
35 |
+
self.task = task
|
36 |
+
self.layer = layer # assume this is 1-based like HuBERT
|
37 |
+
self.max_chunk = max_chunk
|
38 |
+
logger.info(f"TASK CONFIG:\n{self.task.cfg}")
|
39 |
+
logger.info(f" max_chunk = {self.max_chunk}")
|
40 |
+
logger.info(f" model:\n{self.model}")
|
41 |
+
|
42 |
+
def read_audio(self, path, ref_len=None):
|
43 |
+
wav, sr = sf.read(path)
|
44 |
+
assert sr == self.task.cfg.sample_rate, sr
|
45 |
+
if wav.ndim == 2:
|
46 |
+
wav = wav.mean(-1)
|
47 |
+
assert wav.ndim == 1, wav.ndim
|
48 |
+
if ref_len is not None and abs(ref_len - len(wav)) > 160:
|
49 |
+
logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
|
50 |
+
return wav
|
51 |
+
|
52 |
+
def get_feats(self, path, ref_len=None):
|
53 |
+
x = self.read_audio(path, ref_len)
|
54 |
+
with torch.no_grad():
|
55 |
+
x = torch.from_numpy(x).float().cuda()
|
56 |
+
if self.task.cfg.normalize:
|
57 |
+
x = F.layer_norm(x, x.shape)
|
58 |
+
x = x.view(1, -1)
|
59 |
+
|
60 |
+
feat = []
|
61 |
+
for start in range(0, x.size(1), self.max_chunk):
|
62 |
+
x_chunk = x[:, start: start + self.max_chunk]
|
63 |
+
res = self.model.extract_features(
|
64 |
+
source=x_chunk,
|
65 |
+
padding_mask=None,
|
66 |
+
mask=False,
|
67 |
+
)
|
68 |
+
feat_chunk = res["x"]
|
69 |
+
feat.append(feat_chunk)
|
70 |
+
return torch.cat(feat, 1).squeeze(0)
|
71 |
+
|
72 |
+
|
73 |
+
def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk):
|
74 |
+
reader = Wav2Vec2FeatureReader(ckpt_path, layer, max_chunk)
|
75 |
+
generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
|
76 |
+
dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
import argparse
|
81 |
+
|
82 |
+
parser = argparse.ArgumentParser()
|
83 |
+
parser.add_argument("tsv_dir")
|
84 |
+
parser.add_argument("split")
|
85 |
+
parser.add_argument("ckpt_path")
|
86 |
+
parser.add_argument("layer", type=int)
|
87 |
+
parser.add_argument("nshard", type=int)
|
88 |
+
parser.add_argument("rank", type=int)
|
89 |
+
parser.add_argument("feat_dir")
|
90 |
+
parser.add_argument("--max_chunk", type=int, default=1600000)
|
91 |
+
args = parser.parse_args()
|
92 |
+
logger.info(args)
|
93 |
+
|
94 |
+
main(**vars(args))
|