File size: 4,547 Bytes
bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 9cdfca7 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 ef2f554 bde5297 44524f0 ef2f554 bde5297 ef2f554 bde5297 ef2f554 af3b3f8 c5eb6fb d4ef332 af3b3f8 c5eb6fb af3b3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
library_name: transformers
license: apache-2.0
---
# Model card for Mistral-7B-Instruct-Ukrainian
Mistral-7B-UK is a Large Language Model finetuned for the Ukrainian language.
Mistral-7B-UK is trained using the following formula:
1. Initial finetuning of [Mistral-7B-v0.2](mistralai/Mistral-7B-Instruct-v0.2) using structured and unstructured datasets.
2. SLERP merge of the finetuned model with a model that performs better than `Mistral-7B-v0.2` on `OpenLLM` benchmark: [NeuralTrix-7B](https://huggingface.co/CultriX/NeuralTrix-7B-v1)
3. DPO of the final model.
## Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens.
E.g.
```
text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
## Model Architecture
This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
## Datasets - Structured
- [UA-SQUAD](https://huggingface.co/datasets/FIdo-AI/ua-squad/resolve/main/ua_squad_dataset.json)
- [Ukrainian StackExchange](https://huggingface.co/datasets/zeusfsx/ukrainian-stackexchange)
- [UAlpaca Dataset](https://github.com/robinhad/kruk/blob/main/data/cc-by-nc/alpaca_data_translated.json)
- [Ukrainian Subset from Belebele Dataset](https://github.com/facebookresearch/belebele)
- [Ukrainian Subset from XQA](https://github.com/thunlp/XQA)
- [ZNO Dataset provided in UNLP 2024 shared task](https://github.com/unlp-workshop/unlp-2024-shared-task/blob/main/data/zno.train.jsonl)
## Datasets - Unstructured
- Ukrainian Wiki
## Datasets - DPO
- Ukrainian translation of [distilabel-indel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs)
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "SherlockAssistant/Mistral-7B-Instruct-Ukrainian"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.bfloat16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Citation
If you are using this model in your research and publishing a paper, please help by citing our paper:
**BIB**
```bib
@inproceedings{boros-chivereanu-dumitrescu-purcaru-2024-llm-uk,
title = "Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models",
author = "Boros, Tiberiu and Chivereanu, Radu and Dumitrescu, Stefan Daniel and Purcaru, Octavian",
booktitle = "Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING",
month = may,
year = "2024",
address = "Torino, Italy",
publisher = "European Language Resources Association",
}
```
**APA**
Boros, T., Chivereanu, R., Dumitrescu, S., & Purcaru, O. (2024). Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models. In Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING. European Language Resources Association.
**MLA**
Boros, Tiberiu, Radu, Chivereanu, Stefan Daniel, Dumitrescu, Octavian, Purcaru. "Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models." Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING. European Language Resources Association, 2024.
**Chicago**
Boros, Tiberiu, Radu, Chivereanu, Stefan Daniel, Dumitrescu, and Octavian, Purcaru. "Fine-tuning and Retrieval Augmented Generation for Question Answering using affordable Large Language Models." . In Proceedings of the Third Ukrainian Natural Language Processing Workshop, LREC-COLING. European Language Resources Association, 2024.
|