shawgpt-ft-optuna-best-2
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00034531404783845655
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5552 | 0.9231 | 3 | 3.7867 |
3.6928 | 1.8462 | 6 | 2.9622 |
2.8509 | 2.7692 | 9 | 2.3742 |
1.6468 | 4.0 | 13 | 1.7726 |
1.7173 | 4.9231 | 16 | 1.5351 |
1.43 | 5.8462 | 19 | 1.4011 |
1.3076 | 6.7692 | 22 | 1.3614 |
0.9725 | 8.0 | 26 | 1.3340 |
1.2561 | 8.9231 | 29 | 1.3222 |
1.2078 | 9.8462 | 32 | 1.3160 |
1.2112 | 10.7692 | 35 | 1.3130 |
0.8647 | 12.0 | 39 | 1.3108 |
1.1687 | 12.9231 | 42 | 1.3101 |
0.9679 | 13.8462 | 45 | 1.3098 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Shaurya-Shsin/shawgpt-ft-optuna-best-2
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ