BERT_MC_OpenBookQA_w_wrong_context

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7450
  • Accuracy: 0.922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3525 1.0 1859 0.2696 0.906
0.2084 2.0 3718 0.3284 0.9143
0.1263 3.0 5577 0.4205 0.9143
0.0734 4.0 7436 0.4688 0.9203
0.0437 5.0 9295 0.6266 0.9173
0.0357 6.0 11154 0.6934 0.9207
0.0264 7.0 13013 0.6947 0.92
0.0098 8.0 14872 0.6800 0.9197
0.0104 9.0 16731 0.7393 0.923
0.0067 10.0 18590 0.7846 0.9217
0.0034 11.0 20449 0.7450 0.922

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1
  • Datasets 2.5.1
  • Tokenizers 0.11.0
Downloads last month
9
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.