diff_based_error_tagger
This model is a fine-tuned version of csebuetnlp/banglabert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0009
- 5 Err Precision: 0.9667
- 5 Err Recall: 1.0
- 5 Err F1: 0.9831
- 5 Err Number: 29
- Precision: 0.9922
- Recall: 0.9916
- F1: 0.9919
- Number: 9932
- Err Precision: 0.9695
- Err Recall: 1.0
- Err F1: 0.9845
- Err Number: 286
- Egin Err Precision: 0.9938
- Egin Err Recall: 0.9964
- Egin Err F1: 0.9951
- Egin Err Number: 1126
- El Err Precision: 0.9957
- El Err Recall: 0.9942
- El Err F1: 0.9949
- El Err Number: 1384
- Nd Err Precision: 0.9932
- Nd Err Recall: 0.9941
- Nd Err F1: 0.9937
- Nd Err Number: 1183
- Ne Word Err Precision: 0.9978
- Ne Word Err Recall: 0.9942
- Ne Word Err F1: 0.9960
- Ne Word Err Number: 8248
- Unc Insert Err Precision: 0.9956
- Unc Insert Err Recall: 0.9978
- Unc Insert Err F1: 0.9967
- Unc Insert Err Number: 903
- Micro Avg Precision: 0.9944
- Micro Avg Recall: 0.9934
- Micro Avg F1: 0.9939
- Micro Avg Number: 23091
- Macro Avg Precision: 0.9881
- Macro Avg Recall: 0.9960
- Macro Avg F1: 0.9920
- Macro Avg Number: 23091
- Weighted Avg Precision: 0.9944
- Weighted Avg Recall: 0.9934
- Weighted Avg F1: 0.9939
- Weighted Avg Number: 23091
- Overall Accuracy: 0.9994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40.0
Training results
Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number | Precision | Recall | F1 | Number | Err Precision | Err Recall | Err F1 | Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8517 | 1.0 | 575 | 0.2995 | 0.0 | 0.0 | 0.0 | 29 | 0.2579 | 0.0859 | 0.1289 | 9932 | 0.0 | 0.0 | 0.0 | 286 | 0.0 | 0.0 | 0.0 | 1126 | 0.0 | 0.0 | 0.0 | 1384 | 0.0 | 0.0 | 0.0 | 1183 | 0.6479 | 0.2836 | 0.3945 | 8248 | 0.0 | 0.0 | 0.0 | 903 | 0.4615 | 0.1382 | 0.2127 | 23091 | 0.1132 | 0.0462 | 0.0654 | 23091 | 0.3424 | 0.1382 | 0.1963 | 23091 | 0.9291 |
0.2635 | 2.0 | 1150 | 0.2054 | 0.0 | 0.0 | 0.0 | 29 | 0.3578 | 0.2270 | 0.2778 | 9932 | 0.0 | 0.0 | 0.0 | 286 | 0.8148 | 0.0195 | 0.0382 | 1126 | 0.8571 | 0.0650 | 0.1209 | 1384 | 0.7344 | 0.2384 | 0.3599 | 1183 | 0.6604 | 0.5507 | 0.6006 | 8248 | 0.0 | 0.0 | 0.0 | 903 | 0.5250 | 0.3114 | 0.3910 | 23091 | 0.4281 | 0.1376 | 0.1747 | 23091 | 0.5185 | 0.3114 | 0.3616 | 23091 | 0.9422 |
0.2027 | 3.0 | 1725 | 0.1546 | 0.0 | 0.0 | 0.0 | 29 | 0.4421 | 0.3362 | 0.3819 | 9932 | 0.0 | 0.0 | 0.0 | 286 | 0.6649 | 0.5639 | 0.6103 | 1126 | 0.8 | 0.2168 | 0.3411 | 1384 | 0.6406 | 0.5740 | 0.6054 | 1183 | 0.7271 | 0.6519 | 0.6875 | 8248 | 0.6094 | 0.0864 | 0.1513 | 903 | 0.5959 | 0.4507 | 0.5133 | 23091 | 0.4855 | 0.3036 | 0.3472 | 23091 | 0.5869 | 0.4507 | 0.4970 | 23091 | 0.9526 |
0.1655 | 4.0 | 2300 | 0.1197 | 0.0 | 0.0 | 0.0 | 29 | 0.5546 | 0.4326 | 0.4861 | 9932 | 1.0 | 0.0315 | 0.0610 | 286 | 0.8037 | 0.6874 | 0.7410 | 1126 | 0.8553 | 0.3374 | 0.4839 | 1384 | 0.8139 | 0.6653 | 0.7321 | 1183 | 0.8075 | 0.7180 | 0.7601 | 8248 | 0.6805 | 0.1816 | 0.2867 | 903 | 0.6974 | 0.5379 | 0.6073 | 23091 | 0.6894 | 0.3817 | 0.4439 | 23091 | 0.6981 | 0.5379 | 0.5952 | 23091 | 0.9636 |
0.1321 | 5.0 | 2875 | 0.0841 | 0.0 | 0.0 | 0.0 | 29 | 0.6868 | 0.6291 | 0.6567 | 9932 | 0.8431 | 0.1503 | 0.2552 | 286 | 0.8635 | 0.7869 | 0.8234 | 1126 | 0.7739 | 0.7197 | 0.7458 | 1384 | 0.8690 | 0.7625 | 0.8122 | 1183 | 0.8646 | 0.8339 | 0.8490 | 8248 | 0.6517 | 0.3378 | 0.4449 | 903 | 0.7771 | 0.7041 | 0.7388 | 23091 | 0.6941 | 0.5275 | 0.5734 | 23091 | 0.7732 | 0.7041 | 0.7327 | 23091 | 0.9756 |
0.0998 | 6.0 | 3450 | 0.0578 | 0.0 | 0.0 | 0.0 | 29 | 0.8054 | 0.7739 | 0.7893 | 9932 | 0.8182 | 0.2832 | 0.4208 | 286 | 0.8971 | 0.8597 | 0.8780 | 1126 | 0.8313 | 0.8259 | 0.8286 | 1384 | 0.8867 | 0.8335 | 0.8593 | 1183 | 0.9104 | 0.9089 | 0.9097 | 8248 | 0.7280 | 0.6224 | 0.6710 | 903 | 0.8518 | 0.8195 | 0.8353 | 23091 | 0.7346 | 0.6384 | 0.6696 | 23091 | 0.8492 | 0.8195 | 0.8324 | 23091 | 0.9845 |
0.0768 | 7.0 | 4025 | 0.0410 | 0.0 | 0.0 | 0.0 | 29 | 0.8790 | 0.8519 | 0.8652 | 9932 | 0.8889 | 0.3916 | 0.5437 | 286 | 0.9032 | 0.9032 | 0.9032 | 1126 | 0.9332 | 0.8374 | 0.8827 | 1384 | 0.8774 | 0.8588 | 0.8680 | 1183 | 0.9427 | 0.9377 | 0.9402 | 8248 | 0.7850 | 0.7885 | 0.7867 | 903 | 0.9027 | 0.8753 | 0.8888 | 23091 | 0.7762 | 0.6961 | 0.7237 | 23091 | 0.9014 | 0.8753 | 0.8869 | 23091 | 0.9897 |
0.0601 | 8.0 | 4600 | 0.0294 | 0.0 | 0.0 | 0.0 | 29 | 0.9161 | 0.8936 | 0.9047 | 9932 | 0.8775 | 0.6259 | 0.7306 | 286 | 0.9336 | 0.9245 | 0.9290 | 1126 | 0.9555 | 0.8526 | 0.9011 | 1384 | 0.9115 | 0.8791 | 0.8950 | 1183 | 0.9606 | 0.9630 | 0.9618 | 8248 | 0.8757 | 0.8505 | 0.8629 | 903 | 0.9333 | 0.9106 | 0.9218 | 23091 | 0.8038 | 0.7487 | 0.7731 | 23091 | 0.9317 | 0.9106 | 0.9206 | 23091 | 0.9928 |
0.0465 | 9.0 | 5175 | 0.0233 | 0.0 | 0.0 | 0.0 | 29 | 0.9420 | 0.9258 | 0.9338 | 9932 | 0.8583 | 0.7413 | 0.7955 | 286 | 0.9158 | 0.9369 | 0.9263 | 1126 | 0.9421 | 0.9162 | 0.9289 | 1384 | 0.8985 | 0.8977 | 0.8981 | 1183 | 0.9781 | 0.9622 | 0.9701 | 8248 | 0.8934 | 0.9280 | 0.9104 | 903 | 0.9484 | 0.9340 | 0.9411 | 23091 | 0.8035 | 0.7885 | 0.7954 | 23091 | 0.9473 | 0.9340 | 0.9405 | 23091 | 0.9944 |
0.037 | 10.0 | 5750 | 0.0167 | 0.0 | 0.0 | 0.0 | 29 | 0.9539 | 0.9528 | 0.9534 | 9932 | 0.8418 | 0.8741 | 0.8576 | 286 | 0.9517 | 0.9449 | 0.9483 | 1126 | 0.9699 | 0.9321 | 0.9506 | 1384 | 0.9330 | 0.9298 | 0.9314 | 1183 | 0.9726 | 0.9787 | 0.9756 | 8248 | 0.9411 | 0.9557 | 0.9484 | 903 | 0.9585 | 0.9572 | 0.9578 | 23091 | 0.8205 | 0.8210 | 0.8207 | 23091 | 0.9573 | 0.9572 | 0.9572 | 23091 | 0.9960 |
0.0295 | 11.0 | 6325 | 0.0141 | 0.0 | 0.0 | 0.0 | 29 | 0.9551 | 0.9578 | 0.9565 | 9932 | 0.8571 | 0.9021 | 0.8790 | 286 | 0.9607 | 0.9547 | 0.9577 | 1126 | 0.9791 | 0.9473 | 0.9629 | 1384 | 0.9367 | 0.9374 | 0.9371 | 1183 | 0.9868 | 0.9807 | 0.9838 | 8248 | 0.8456 | 0.9767 | 0.9065 | 903 | 0.9609 | 0.9630 | 0.9619 | 23091 | 0.8151 | 0.8321 | 0.8229 | 23091 | 0.9605 | 0.9630 | 0.9616 | 23091 | 0.9964 |
0.0249 | 12.0 | 6900 | 0.0102 | 1.0 | 0.0690 | 0.1290 | 29 | 0.9775 | 0.9723 | 0.9749 | 9932 | 0.9231 | 0.8811 | 0.9016 | 286 | 0.9453 | 0.9671 | 0.9561 | 1126 | 0.9708 | 0.9624 | 0.9666 | 1384 | 0.9456 | 0.9544 | 0.9499 | 1183 | 0.9896 | 0.9850 | 0.9873 | 8248 | 0.9671 | 0.9779 | 0.9725 | 903 | 0.9771 | 0.9730 | 0.9751 | 23091 | 0.9649 | 0.8461 | 0.8547 | 23091 | 0.9772 | 0.9730 | 0.9746 | 23091 | 0.9975 |
0.0203 | 13.0 | 7475 | 0.0084 | 1.0 | 0.1379 | 0.2424 | 29 | 0.9787 | 0.9723 | 0.9755 | 9932 | 0.9357 | 0.9161 | 0.9258 | 286 | 0.9733 | 0.9716 | 0.9724 | 1126 | 0.9904 | 0.9646 | 0.9773 | 1384 | 0.9574 | 0.9687 | 0.9630 | 1183 | 0.9924 | 0.9879 | 0.9902 | 8248 | 0.9757 | 0.9767 | 0.9762 | 903 | 0.9823 | 0.9756 | 0.9789 | 23091 | 0.9755 | 0.8620 | 0.8779 | 23091 | 0.9823 | 0.9756 | 0.9785 | 23091 | 0.9980 |
0.0181 | 14.0 | 8050 | 0.0066 | 1.0 | 0.2069 | 0.3429 | 29 | 0.9827 | 0.9785 | 0.9806 | 9932 | 0.9627 | 0.9021 | 0.9314 | 286 | 0.9743 | 0.9760 | 0.9752 | 1126 | 0.9804 | 0.9776 | 0.9790 | 1384 | 0.9662 | 0.9653 | 0.9658 | 1183 | 0.9934 | 0.9905 | 0.9920 | 8248 | 0.9738 | 0.9889 | 0.9813 | 903 | 0.9846 | 0.9804 | 0.9825 | 23091 | 0.9792 | 0.8732 | 0.8935 | 23091 | 0.9846 | 0.9804 | 0.9822 | 23091 | 0.9983 |
0.0149 | 15.0 | 8625 | 0.0060 | 1.0 | 0.3448 | 0.5128 | 29 | 0.9842 | 0.9783 | 0.9812 | 9932 | 0.9416 | 0.9580 | 0.9497 | 286 | 0.9744 | 0.9822 | 0.9783 | 1126 | 0.9883 | 0.9776 | 0.9829 | 1384 | 0.9748 | 0.9806 | 0.9777 | 1183 | 0.9957 | 0.9871 | 0.9914 | 8248 | 0.9824 | 0.9900 | 0.9862 | 903 | 0.9870 | 0.9811 | 0.9840 | 23091 | 0.9802 | 0.8998 | 0.9200 | 23091 | 0.9870 | 0.9811 | 0.9839 | 23091 | 0.9985 |
0.0128 | 16.0 | 9200 | 0.0041 | 1.0 | 0.4828 | 0.6512 | 29 | 0.9874 | 0.9854 | 0.9864 | 9932 | 0.9618 | 0.9685 | 0.9652 | 286 | 0.9832 | 0.9885 | 0.9858 | 1126 | 0.9898 | 0.9848 | 0.9873 | 1384 | 0.9789 | 0.9822 | 0.9806 | 1183 | 0.9951 | 0.9928 | 0.9940 | 8248 | 0.9879 | 0.9945 | 0.9912 | 903 | 0.9894 | 0.9875 | 0.9884 | 23091 | 0.9855 | 0.9224 | 0.9427 | 23091 | 0.9894 | 0.9875 | 0.9883 | 23091 | 0.9989 |
0.0109 | 17.0 | 9775 | 0.0038 | 1.0 | 0.6552 | 0.7917 | 29 | 0.9880 | 0.9858 | 0.9869 | 9932 | 0.9516 | 0.9615 | 0.9565 | 286 | 0.9876 | 0.9876 | 0.9876 | 1126 | 0.9877 | 0.9892 | 0.9884 | 1384 | 0.9772 | 0.9789 | 0.9780 | 1183 | 0.9947 | 0.9932 | 0.9939 | 8248 | 0.9944 | 0.9911 | 0.9928 | 903 | 0.9896 | 0.9879 | 0.9887 | 23091 | 0.9851 | 0.9428 | 0.9595 | 23091 | 0.9896 | 0.9879 | 0.9887 | 23091 | 0.9989 |
0.0104 | 18.0 | 10350 | 0.0033 | 1.0 | 0.6207 | 0.7660 | 29 | 0.9885 | 0.9872 | 0.9879 | 9932 | 0.9561 | 0.9895 | 0.9725 | 286 | 0.9763 | 0.9893 | 0.9828 | 1126 | 0.9899 | 0.9921 | 0.9910 | 1384 | 0.9783 | 0.9890 | 0.9836 | 1183 | 0.9953 | 0.9941 | 0.9947 | 8248 | 0.9945 | 0.9934 | 0.9939 | 903 | 0.9897 | 0.9900 | 0.9898 | 23091 | 0.9849 | 0.9444 | 0.9590 | 23091 | 0.9897 | 0.9900 | 0.9898 | 23091 | 0.9990 |
0.009 | 19.0 | 10925 | 0.0026 | 0.9565 | 0.7586 | 0.8462 | 29 | 0.9903 | 0.9898 | 0.9901 | 9932 | 0.9690 | 0.9825 | 0.9757 | 286 | 0.9902 | 0.9876 | 0.9889 | 1126 | 0.9942 | 0.9899 | 0.9920 | 1384 | 0.9890 | 0.9899 | 0.9894 | 1183 | 0.9952 | 0.9954 | 0.9953 | 8248 | 0.9934 | 0.9956 | 0.9945 | 903 | 0.9920 | 0.9916 | 0.9918 | 23091 | 0.9847 | 0.9612 | 0.9715 | 23091 | 0.9920 | 0.9916 | 0.9918 | 23091 | 0.9992 |
0.0077 | 20.0 | 11500 | 0.0024 | 1.0 | 0.8966 | 0.9455 | 29 | 0.9913 | 0.9906 | 0.9910 | 9932 | 0.9530 | 0.9930 | 0.9726 | 286 | 0.9885 | 0.9938 | 0.9911 | 1126 | 0.9942 | 0.9949 | 0.9946 | 1384 | 0.9874 | 0.9915 | 0.9895 | 1183 | 0.9976 | 0.9931 | 0.9953 | 8248 | 0.9956 | 0.9956 | 0.9956 | 903 | 0.9931 | 0.9921 | 0.9926 | 23091 | 0.9885 | 0.9811 | 0.9844 | 23091 | 0.9931 | 0.9921 | 0.9926 | 23091 | 0.9993 |
0.0068 | 21.0 | 12075 | 0.0023 | 1.0 | 0.8966 | 0.9455 | 29 | 0.9911 | 0.9895 | 0.9903 | 9932 | 0.9823 | 0.9720 | 0.9772 | 286 | 0.9868 | 0.9947 | 0.9907 | 1126 | 0.9957 | 0.9928 | 0.9942 | 1384 | 0.9858 | 0.9941 | 0.9899 | 1183 | 0.9966 | 0.9939 | 0.9953 | 8248 | 0.9967 | 0.9934 | 0.9950 | 903 | 0.9930 | 0.9916 | 0.9923 | 23091 | 0.9919 | 0.9784 | 0.9848 | 23091 | 0.9930 | 0.9916 | 0.9923 | 23091 | 0.9993 |
0.0062 | 22.0 | 12650 | 0.0019 | 1.0 | 0.8966 | 0.9455 | 29 | 0.9913 | 0.9914 | 0.9914 | 9932 | 0.9758 | 0.9860 | 0.9809 | 286 | 0.9894 | 0.9911 | 0.9902 | 1126 | 0.9942 | 0.9935 | 0.9939 | 1384 | 0.9890 | 0.9907 | 0.9899 | 1183 | 0.9960 | 0.9956 | 0.9958 | 8248 | 0.9956 | 0.9956 | 0.9956 | 903 | 0.9929 | 0.9930 | 0.9930 | 23091 | 0.9914 | 0.9801 | 0.9854 | 23091 | 0.9929 | 0.9930 | 0.9930 | 23091 | 0.9993 |
0.0055 | 23.0 | 13225 | 0.0018 | 1.0 | 0.9310 | 0.9643 | 29 | 0.9923 | 0.9911 | 0.9917 | 9932 | 0.9758 | 0.9860 | 0.9809 | 286 | 0.9902 | 0.9911 | 0.9907 | 1126 | 0.9942 | 0.9949 | 0.9946 | 1384 | 0.9882 | 0.9932 | 0.9907 | 1183 | 0.9967 | 0.9943 | 0.9955 | 8248 | 0.9967 | 0.9945 | 0.9956 | 903 | 0.9937 | 0.9926 | 0.9931 | 23091 | 0.9918 | 0.9845 | 0.9880 | 23091 | 0.9937 | 0.9926 | 0.9931 | 23091 | 0.9994 |
0.0053 | 24.0 | 13800 | 0.0015 | 1.0 | 0.9310 | 0.9643 | 29 | 0.9922 | 0.9916 | 0.9919 | 9932 | 0.9860 | 0.9825 | 0.9842 | 286 | 0.9903 | 0.9929 | 0.9916 | 1126 | 0.9942 | 0.9957 | 0.9949 | 1384 | 0.9899 | 0.9924 | 0.9911 | 1183 | 0.9959 | 0.9958 | 0.9958 | 8248 | 0.9967 | 0.9945 | 0.9956 | 903 | 0.9935 | 0.9934 | 0.9935 | 23091 | 0.9931 | 0.9845 | 0.9887 | 23091 | 0.9935 | 0.9934 | 0.9935 | 23091 | 0.9994 |
0.0048 | 25.0 | 14375 | 0.0015 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9916 | 0.9915 | 0.9916 | 9932 | 0.9758 | 0.9860 | 0.9809 | 286 | 0.9912 | 0.9956 | 0.9934 | 1126 | 0.9928 | 0.9971 | 0.9950 | 1384 | 0.9891 | 0.9949 | 0.9920 | 1183 | 0.9967 | 0.9941 | 0.9954 | 8248 | 0.9967 | 0.9967 | 0.9967 | 903 | 0.9933 | 0.9933 | 0.9933 | 23091 | 0.9876 | 0.9945 | 0.9910 | 23091 | 0.9933 | 0.9933 | 0.9933 | 23091 | 0.9994 |
0.0039 | 26.0 | 14950 | 0.0013 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9920 | 0.9908 | 0.9914 | 9932 | 0.9792 | 0.9895 | 0.9843 | 286 | 0.9912 | 0.9956 | 0.9934 | 1126 | 0.9971 | 0.9928 | 0.9949 | 1384 | 0.9916 | 0.9932 | 0.9924 | 1183 | 0.9966 | 0.9952 | 0.9959 | 8248 | 0.9967 | 0.9967 | 0.9967 | 903 | 0.9939 | 0.9931 | 0.9935 | 23091 | 0.9889 | 0.9942 | 0.9915 | 23091 | 0.9939 | 0.9931 | 0.9935 | 23091 | 0.9994 |
0.0039 | 27.0 | 15525 | 0.0013 | 1.0 | 0.9310 | 0.9643 | 29 | 0.9912 | 0.9921 | 0.9917 | 9932 | 0.9726 | 0.9930 | 0.9827 | 286 | 0.9929 | 0.9973 | 0.9951 | 1126 | 0.9978 | 0.9921 | 0.9949 | 1384 | 0.9907 | 0.9949 | 0.9928 | 1183 | 0.9949 | 0.9964 | 0.9956 | 8248 | 0.9923 | 0.9989 | 0.9956 | 903 | 0.9928 | 0.9942 | 0.9935 | 23091 | 0.9916 | 0.9870 | 0.9891 | 23091 | 0.9928 | 0.9942 | 0.9935 | 23091 | 0.9994 |
0.0037 | 28.0 | 16100 | 0.0013 | 1.0 | 0.9655 | 0.9825 | 29 | 0.9925 | 0.9915 | 0.9920 | 9932 | 0.9826 | 0.9860 | 0.9843 | 286 | 0.9929 | 0.9956 | 0.9942 | 1126 | 0.9942 | 0.9957 | 0.9949 | 1384 | 0.9924 | 0.9949 | 0.9937 | 1183 | 0.9982 | 0.9936 | 0.9959 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9947 | 0.9930 | 0.9938 | 23091 | 0.9936 | 0.9901 | 0.9918 | 23091 | 0.9947 | 0.9930 | 0.9938 | 23091 | 0.9994 |
0.0034 | 29.0 | 16675 | 0.0012 | 1.0 | 0.9655 | 0.9825 | 29 | 0.9918 | 0.9919 | 0.9919 | 9932 | 0.9726 | 0.9930 | 0.9827 | 286 | 0.9964 | 0.9938 | 0.9951 | 1126 | 0.9957 | 0.9942 | 0.9949 | 1384 | 0.9949 | 0.9924 | 0.9937 | 1183 | 0.9965 | 0.9950 | 0.9958 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9940 | 0.9935 | 0.9938 | 23091 | 0.9929 | 0.9905 | 0.9916 | 23091 | 0.9940 | 0.9935 | 0.9938 | 23091 | 0.9994 |
0.0031 | 30.0 | 17250 | 0.0011 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9909 | 0.9920 | 0.9915 | 9932 | 0.9792 | 0.9895 | 0.9843 | 286 | 0.9956 | 0.9947 | 0.9951 | 1126 | 0.9942 | 0.9957 | 0.9949 | 1384 | 0.9949 | 0.9932 | 0.9941 | 1183 | 0.9956 | 0.9962 | 0.9959 | 8248 | 0.9989 | 0.9945 | 0.9967 | 903 | 0.9934 | 0.9940 | 0.9937 | 23091 | 0.9895 | 0.9945 | 0.9920 | 23091 | 0.9934 | 0.9940 | 0.9937 | 23091 | 0.9994 |
0.0026 | 31.0 | 17825 | 0.0011 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9910 | 0.9918 | 0.9914 | 9932 | 0.9727 | 0.9965 | 0.9845 | 286 | 0.9938 | 0.9964 | 0.9951 | 1126 | 0.9928 | 0.9971 | 0.9950 | 1384 | 0.9932 | 0.9924 | 0.9928 | 1183 | 0.9964 | 0.9953 | 0.9958 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9932 | 0.9939 | 0.9936 | 23091 | 0.9878 | 0.9959 | 0.9918 | 23091 | 0.9932 | 0.9939 | 0.9936 | 23091 | 0.9994 |
0.0025 | 32.0 | 18400 | 0.0011 | 1.0 | 0.9655 | 0.9825 | 29 | 0.9914 | 0.9920 | 0.9917 | 9932 | 0.9727 | 0.9965 | 0.9845 | 286 | 0.9973 | 0.9929 | 0.9951 | 1126 | 0.9900 | 1.0 | 0.9950 | 1384 | 0.9932 | 0.9924 | 0.9928 | 1183 | 0.9972 | 0.9948 | 0.9960 | 8248 | 0.9945 | 0.9989 | 0.9967 | 903 | 0.9937 | 0.9939 | 0.9938 | 23091 | 0.9920 | 0.9916 | 0.9918 | 23091 | 0.9937 | 0.9939 | 0.9938 | 23091 | 0.9994 |
0.0025 | 33.0 | 18975 | 0.0010 | 1.0 | 0.9655 | 0.9825 | 29 | 0.9918 | 0.9922 | 0.9920 | 9932 | 0.9694 | 0.9965 | 0.9828 | 286 | 0.9973 | 0.9929 | 0.9951 | 1126 | 0.9928 | 0.9971 | 0.9950 | 1384 | 0.9932 | 0.9932 | 0.9932 | 1183 | 0.9966 | 0.9952 | 0.9959 | 8248 | 0.9967 | 0.9967 | 0.9967 | 903 | 0.9939 | 0.9939 | 0.9939 | 23091 | 0.9922 | 0.9912 | 0.9916 | 23091 | 0.9939 | 0.9939 | 0.9939 | 23091 | 0.9994 |
0.0023 | 34.0 | 19550 | 0.0010 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9914 | 0.9920 | 0.9917 | 9932 | 0.9662 | 1.0 | 0.9828 | 286 | 0.9947 | 0.9956 | 0.9951 | 1126 | 0.9964 | 0.9935 | 0.9949 | 1384 | 0.9932 | 0.9924 | 0.9928 | 1183 | 0.9964 | 0.9954 | 0.9959 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9935 | 0.9939 | 0.9937 | 23091 | 0.9876 | 0.9958 | 0.9916 | 23091 | 0.9936 | 0.9939 | 0.9937 | 23091 | 0.9994 |
0.0023 | 35.0 | 20125 | 0.0010 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9924 | 0.9918 | 0.9921 | 9932 | 0.9662 | 1.0 | 0.9828 | 286 | 0.9929 | 0.9973 | 0.9951 | 1126 | 0.9964 | 0.9935 | 0.9949 | 1384 | 0.9916 | 0.9958 | 0.9937 | 1183 | 0.9970 | 0.9945 | 0.9958 | 8248 | 0.9967 | 0.9967 | 0.9967 | 903 | 0.9941 | 0.9937 | 0.9939 | 23091 | 0.9875 | 0.9962 | 0.9918 | 23091 | 0.9941 | 0.9937 | 0.9939 | 23091 | 0.9994 |
0.002 | 36.0 | 20700 | 0.0010 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9923 | 0.9915 | 0.9919 | 9932 | 0.9695 | 1.0 | 0.9845 | 286 | 0.9947 | 0.9956 | 0.9951 | 1126 | 0.9957 | 0.9942 | 0.9949 | 1384 | 0.9924 | 0.9949 | 0.9937 | 1183 | 0.9979 | 0.9941 | 0.9960 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9945 | 0.9933 | 0.9939 | 23091 | 0.9881 | 0.9960 | 0.9920 | 23091 | 0.9945 | 0.9933 | 0.9939 | 23091 | 0.9994 |
0.0018 | 37.0 | 21275 | 0.0009 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9915 | 0.9919 | 0.9917 | 9932 | 0.9792 | 0.9895 | 0.9843 | 286 | 0.9938 | 0.9964 | 0.9951 | 1126 | 0.9964 | 0.9935 | 0.9949 | 1384 | 0.9924 | 0.9949 | 0.9937 | 1183 | 0.9965 | 0.9955 | 0.9960 | 8248 | 0.9967 | 0.9967 | 0.9967 | 903 | 0.9938 | 0.9939 | 0.9938 | 23091 | 0.9891 | 0.9948 | 0.9919 | 23091 | 0.9938 | 0.9939 | 0.9938 | 23091 | 0.9994 |
0.002 | 38.0 | 21850 | 0.0009 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9920 | 0.9914 | 0.9917 | 9932 | 0.9727 | 0.9965 | 0.9845 | 286 | 0.9956 | 0.9947 | 0.9951 | 1126 | 0.9949 | 0.9949 | 0.9949 | 1384 | 0.9924 | 0.9949 | 0.9937 | 1183 | 0.9979 | 0.9938 | 0.9959 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9944 | 0.9932 | 0.9938 | 23091 | 0.9885 | 0.9955 | 0.9919 | 23091 | 0.9944 | 0.9932 | 0.9938 | 23091 | 0.9994 |
0.0018 | 39.0 | 22425 | 0.0009 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9924 | 0.9914 | 0.9919 | 9932 | 0.9695 | 1.0 | 0.9845 | 286 | 0.9947 | 0.9956 | 0.9951 | 1126 | 0.9957 | 0.9942 | 0.9949 | 1384 | 0.9941 | 0.9932 | 0.9937 | 1183 | 0.9978 | 0.9942 | 0.9960 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9945 | 0.9932 | 0.9939 | 23091 | 0.9883 | 0.9958 | 0.9920 | 23091 | 0.9946 | 0.9932 | 0.9939 | 23091 | 0.9994 |
0.0017 | 40.0 | 23000 | 0.0009 | 0.9667 | 1.0 | 0.9831 | 29 | 0.9922 | 0.9916 | 0.9919 | 9932 | 0.9695 | 1.0 | 0.9845 | 286 | 0.9938 | 0.9964 | 0.9951 | 1126 | 0.9957 | 0.9942 | 0.9949 | 1384 | 0.9932 | 0.9941 | 0.9937 | 1183 | 0.9978 | 0.9942 | 0.9960 | 8248 | 0.9956 | 0.9978 | 0.9967 | 903 | 0.9944 | 0.9934 | 0.9939 | 23091 | 0.9881 | 0.9960 | 0.9920 | 23091 | 0.9944 | 0.9934 | 0.9939 | 23091 | 0.9994 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.