DATASET
MilliyetNER dataset was collected from the Turkish Milliyet newspaper articles between 1997-1998. This dataset is presented by Tür et al. (2003). It was collected from news articles and manually annotated with three different entity types: Person, Location, Organization. The authors did not provide training/validation/test splits for this dataset. Dataset splits used by Yeniterzi et al. 2011.
For more information: tdd.ai - MilliyetNER
Model is only trained using training set. Test set not included during the last training.
USAGE
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("alierenak/berturk-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("alierenak/berturk-cased-ner")
ner_pipeline = pipeline('ner', model=model, tokenizer=tokenizer)
ner_pipeline("Türkiye'nin başkenti Ankara, ilk cumhurbaşkanı Mustafa Kemal Atatürk'tür.")
RESULT
[{'entity': 'B-LOCATION',
'score': 0.9966415,
'index': 1,
'word': 'Türkiye',
'start': 0,
'end': 7},
{'entity': 'B-LOCATION',
'score': 0.99456763,
'index': 5,
'word': 'Ankara',
'start': 21,
'end': 27},
{'entity': 'B-PERSON',
'score': 0.9958741,
'index': 9,
'word': 'Mustafa',
'start': 47,
'end': 54},
{'entity': 'I-PERSON',
'score': 0.98833394,
'index': 10,
'word': 'Kemal',
'start': 55,
'end': 60},
{'entity': 'I-PERSON',
'score': 0.9837286,
'index': 11,
'word': 'Atatürk',
'start': 61,
'end': 68}]
BENCHMARKING
precision recall f1-score support
LOCATION 0.97 0.96 0.97 960
ORGANIZATION 0.95 0.92 0.94 863
PERSON 0.97 0.97 0.97 1410
micro avg 0.97 0.95 0.96 3233
macro avg 0.96 0.95 0.96 3233
weighted avg 0.97 0.95 0.96 3233
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.