File size: 6,259 Bytes
41eee5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b15e2a
41eee5f
 
 
 
 
7b15e2a
 
41eee5f
 
 
 
 
 
 
 
 
 
 
 
7b15e2a
 
41eee5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2caf23
41eee5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b15e2a
 
b2caf23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset

from cifar10 import Cifar10
from CustomCIFAR10Dataset import CustomCIFAR10Dataset


# create dataset builder instance
cifar10_builder = Cifar10()
# downloads the dataset
cifar10_builder.download_and_prepare()

# generate the dataset ('train', 'test' portion)
train_data = cifar10_builder.as_dataset(split='train')
test_data = cifar10_builder.as_dataset(split='test')

train_images = train_data["img"]
train_labels = train_data["label"]

test_images = test_data["img"]
test_labels = test_data["label"]

# Cifar10 classes
classes =  ("airplane", "automobile", "bird", "cat", "deer",
            "dog", "frog", "horse", "ship", "truck")

# # we can plot and access the images like this
# from matplotlib import pyplot as plt
# from matplotlib import image as mpimg

# # doing index first and then "img" is faster because image is decoded immediately when chosen (index -> decoding is faster than decoding -> index)
# plt.imshow(train_ds[0]["img"])
# plt.show()

# PARAMETERS
# batch size during training
batch_size = 128

# image size
img_size = 32

# number of channels in image (3, because RGB in this case)
nc = 3

# output size (10 classes)
output = len(classes)

# Num of GPUs (pick 0 for CPU)
ngpu = 0

# number of workers
nw = 0

# number of training epochs
num_epochs = 5

# learning rate
learning_rate = 0.0022

# chooses which device to use
device = torch.device("cuda:0" if (torch.cuda.is_available()) and (ngpu > 0) else "cpu")

# transforms for image. CONVERT TO TENSOR VERY IMPORTANT, OTHERWISE DATALOADER WON"T ACCEPT IMAGE
transform = transforms.Compose([
    transforms.Resize((32, 32)),         # Resize the image to 32x32 (required for CIFAR-10)
    transforms.ToTensor(),               # Convert PIL Image to a tensor
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),  # Normalize the image to [-1, 1]
])

# We use our custsom cifar10 dataset class to convert the dataset to a format that the torch dataloader can use
train_ds = CustomCIFAR10Dataset(train_data["img"], train_data["label"], transform=transform)
test_ds = CustomCIFAR10Dataset(test_data["img"], test_data["label"], transform=transform)

# LOADERS FOR DATASET
train_loader = DataLoader(train_ds, batch_size, shuffle=True, num_workers=nw)
test_loader = DataLoader(test_ds, batch_size, shuffle=True, num_workers=nw)


# The nueral net class
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.network = nn.Sequential(
            # first 2 concolutional layers
            nn.Conv2d(nc, 16, kernel_size=3, stride=1, padding=1),          # a convoltional layer with 3 input channels, 16 output channels,
                                                                            # a kernel size of 3, a stride of 1, and padding of 1
            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),

            # max pooling layers
            nn.MaxPool2d(kernel_size=2, stride=2),                          # a max pooling layer with kernel size of 3 and stride of 1
                                                                            # helps reduce spatial dimensions of feature maps
            nn.Flatten(),
            nn.Linear(32 * 16 * 16, 64),                                    # adjust the input size based on the output of the last conv layer
            nn.Linear(64, 16),
            nn.Linear(16, output),
        )


    def forward(self, x):
        return self.network(x)
    
# creates instance of the model
model = Net()

# create the optimizer and criterion
criterion = nn.CrossEntropyLoss()
# Adam optimizer yields much better results than SGD
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# moves model to device (ie. cpu/gpu)
model.to(device)

print("started training")
for epoch in range(num_epochs):
    model.train()           # set model to training mode (important when using dropout or batch normalization)

    running_loss = 0.0
    for batch_idx, (images, labels) in enumerate(train_loader):
        inputs = images.to(device)
        labels = labels.to(device)
        # print("print inputs shape: ", inputs.shape)

        optimizer.zero_grad()       # reset gradients

        # forward pass
        predictions = model(inputs)

        # compute loss
        loss = criterion(predictions, labels)

        # Backpropogation
        loss.backward()

        # update models parameters
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if batch_idx % 2000 == 1999:    # print every 2000 mini-batches
            print(f'[{epoch + 1}, {batch_idx + 1:5d}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0
        
    print(f"epoch: {epoch + 1}/{num_epochs}")
        
print("finished training")


# After training, evaluate the model on the test dataset to get final performance metrics
model.eval()  # Set the model to evaluation mode (important when using dropout or batch normalization)
correct = 0
total = 0

with torch.no_grad():
    for batch_idx, (images, labels) in enumerate(test_loader):
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        predictions = model(images)

        # Compute evaluation metrics (e.g., accuracy, precision, recall, etc.)
        # get predicted class for each image
        _, predicted = torch.max(predictions.data, 1)

        # Count the total number of labels in the test dataset
        total += labels.size(0)

        # Count the number of correct predictions
        correct += (predicted == labels).sum().item()

# calculate the accuracy
accuracy = correct/total
print(f"Accuracy on the test dataset: {accuracy:.2%}")


## IMPROVEMENTS/DEGREDATIONS ##
# BASELINE: ~51-54%

# After AutoAugment(CIFAR10):  ~40%

# After Dropout: ~51-52%

# After adding another fully connected layer (64 in, 16 out): ~50-51%

# After adding weight decay to optimizer: (0.01): ~51+%

# ADDED: After adding all layers to nn.Sequential: ~55-57%

# ADDED: After using optim.Adam instead of optim.SGD: ~61-62%

# MAX Observed accuracy: 63.20%