File size: 2,413 Bytes
f79602a 7cf032c f79602a 7f74e1c f79602a f8123c6 f79602a f8123c6 7f74e1c f79602a 7cf032c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Sebastian77/distilbert-base-uncased-finetuned-squad_es
results: []
language:
- es
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Sebastian77/distilbert-base-uncased-finetuned-squad_es
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.1062
- Train End Logits Accuracy: 0.5048
- Train Start Logits Accuracy: 0.4516
- Validation Loss: 2.1434
- Validation End Logits Accuracy: 0.5010
- Validation Start Logits Accuracy: 0.4433
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18552, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 2.7238 | 0.3737 | 0.3295 | 2.2772 | 0.4800 | 0.4195 | 0 |
| 2.1062 | 0.5048 | 0.4516 | 2.1434 | 0.5010 | 0.4433 | 1 |
### Framework versions
- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2 |