File size: 3,924 Bytes
bdfbd06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- codet5
datasets:
- code_search_net
inference: false
---

# CodeT5 (small-sized model) 

Pre-trained CodeT5 model. It was introduced in the paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation](https://arxiv.org/abs/2109.00859) by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi and first released in [this repository](https://github.com/salesforce/CodeT5). 

Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has been written by the Hugging Face team (more specifically, [nielsr](https://huggingface.co/nielsr)).

## Model description

From the abstract:

"We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code."

## Intended uses & limitations

This repository contains the pre-trained model only, so you can use this model for masked span prediction, as shown in the code example below. However, the main use of this model is to fine-tune it for a downstream task of interest, such as:
* code summarization
* code generation
* code translation
* code refinement
* code defect detection
* code clone detection. 

See the [model hub](https://huggingface.co/models?search=salesforce/codet) to look for fine-tuned versions on a task that interests you.

### How to use

Here is how to use this model:

```python
from transformers import RobertaTokenizer, T5ForConditionalGeneration

tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small')
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small')

text = "def greet(user): print(f'hello <extra_id_0>!')"
input_ids = tokenizer(text, return_tensors="pt").input_ids

# simply generate a single sequence
generated_ids = model.generate(input_ids, max_length=10)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
# this prints "user: {user.name}"
```

## Training data

The CodeT5 model was pretrained on CodeSearchNet [Husain et al., 2019](https://arxiv.org/abs/1909.09436). Additionally, the authors collected two datasets of C/CSharp from [BigQuery1](https://console.cloud.google.com/marketplace/details/github/github-repos) to ensure that all downstream tasks have overlapped programming languages with the pre-training data. In total, around 8.35 million instances are used for pretraining. 

## Training procedure

### Preprocessing

This model uses a code-specific BPE (Byte-Pair Encoding) tokenizer. One can prepare text (or code) for the model using RobertaTokenizer, with the files from this repository.

## Evaluation results

For evaluation results on several downstream benchmarks, we refer to the paper.

### BibTeX entry and citation info

```bibtex
@misc{wang2021codet5,
      title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, 
      author={Yue Wang and Weishi Wang and Shafiq Joty and Steven C. H. Hoi},
      year={2021},
      eprint={2109.00859},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```