SaulLu commited on
Commit
bdfbd06
1 Parent(s): 35ec908

add codeT5

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - codet5
5
+ datasets:
6
+ - code_search_net
7
+ inference: false
8
+ ---
9
+
10
+ # CodeT5 (small-sized model)
11
+
12
+ Pre-trained CodeT5 model. It was introduced in the paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
13
+ for Code Understanding and Generation](https://arxiv.org/abs/2109.00859) by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi and first released in [this repository](https://github.com/salesforce/CodeT5).
14
+
15
+ Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has been written by the Hugging Face team (more specifically, [nielsr](https://huggingface.co/nielsr)).
16
+
17
+ ## Model description
18
+
19
+ From the abstract:
20
+
21
+ "We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code."
22
+
23
+ ## Intended uses & limitations
24
+
25
+ This repository contains the pre-trained model only, so you can use this model for masked span prediction, as shown in the code example below. However, the main use of this model is to fine-tune it for a downstream task of interest, such as:
26
+ * code summarization
27
+ * code generation
28
+ * code translation
29
+ * code refinement
30
+ * code defect detection
31
+ * code clone detection.
32
+
33
+ See the [model hub](https://huggingface.co/models?search=salesforce/codet) to look for fine-tuned versions on a task that interests you.
34
+
35
+ ### How to use
36
+
37
+ Here is how to use this model:
38
+
39
+ ```python
40
+ from transformers import RobertaTokenizer, T5ForConditionalGeneration
41
+
42
+ tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small')
43
+ model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small')
44
+
45
+ text = "def greet(user): print(f'hello <extra_id_0>!')"
46
+ input_ids = tokenizer(text, return_tensors="pt").input_ids
47
+
48
+ # simply generate a single sequence
49
+ generated_ids = model.generate(input_ids, max_length=10)
50
+ print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
51
+ # this prints "user: {user.name}"
52
+ ```
53
+
54
+ ## Training data
55
+
56
+ The CodeT5 model was pretrained on CodeSearchNet [Husain et al., 2019](https://arxiv.org/abs/1909.09436). Additionally, the authors collected two datasets of C/CSharp from [BigQuery1](https://console.cloud.google.com/marketplace/details/github/github-repos) to ensure that all downstream tasks have overlapped programming languages with the pre-training data. In total, around 8.35 million instances are used for pretraining.
57
+
58
+ ## Training procedure
59
+
60
+ ### Preprocessing
61
+
62
+ This model uses a code-specific BPE (Byte-Pair Encoding) tokenizer. One can prepare text (or code) for the model using RobertaTokenizer, with the files from this repository.
63
+
64
+ ## Evaluation results
65
+
66
+ For evaluation results on several downstream benchmarks, we refer to the paper.
67
+
68
+ ### BibTeX entry and citation info
69
+
70
+ ```bibtex
71
+ @misc{wang2021codet5,
72
+ title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation},
73
+ author={Yue Wang and Weishi Wang and Shafiq Joty and Steven C. H. Hoi},
74
+ year={2021},
75
+ eprint={2109.00859},
76
+ archivePrefix={arXiv},
77
+ primaryClass={cs.CL}
78
+ }
79
+ ```
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<extra_id_99>": 32000, "<extra_id_98>": 32001, "<extra_id_97>": 32002, "<extra_id_96>": 32003, "<extra_id_95>": 32004, "<extra_id_94>": 32005, "<extra_id_93>": 32006, "<extra_id_92>": 32007, "<extra_id_91>": 32008, "<extra_id_90>": 32009, "<extra_id_89>": 32010, "<extra_id_88>": 32011, "<extra_id_87>": 32012, "<extra_id_86>": 32013, "<extra_id_85>": 32014, "<extra_id_84>": 32015, "<extra_id_83>": 32016, "<extra_id_82>": 32017, "<extra_id_81>": 32018, "<extra_id_80>": 32019, "<extra_id_79>": 32020, "<extra_id_78>": 32021, "<extra_id_77>": 32022, "<extra_id_76>": 32023, "<extra_id_75>": 32024, "<extra_id_74>": 32025, "<extra_id_73>": 32026, "<extra_id_72>": 32027, "<extra_id_71>": 32028, "<extra_id_70>": 32029, "<extra_id_69>": 32030, "<extra_id_68>": 32031, "<extra_id_67>": 32032, "<extra_id_66>": 32033, "<extra_id_65>": 32034, "<extra_id_64>": 32035, "<extra_id_63>": 32036, "<extra_id_62>": 32037, "<extra_id_61>": 32038, "<extra_id_60>": 32039, "<extra_id_59>": 32040, "<extra_id_58>": 32041, "<extra_id_57>": 32042, "<extra_id_56>": 32043, "<extra_id_55>": 32044, "<extra_id_54>": 32045, "<extra_id_53>": 32046, "<extra_id_52>": 32047, "<extra_id_51>": 32048, "<extra_id_50>": 32049, "<extra_id_49>": 32050, "<extra_id_48>": 32051, "<extra_id_47>": 32052, "<extra_id_46>": 32053, "<extra_id_45>": 32054, "<extra_id_44>": 32055, "<extra_id_43>": 32056, "<extra_id_42>": 32057, "<extra_id_41>": 32058, "<extra_id_40>": 32059, "<extra_id_39>": 32060, "<extra_id_38>": 32061, "<extra_id_37>": 32062, "<extra_id_36>": 32063, "<extra_id_35>": 32064, "<extra_id_34>": 32065, "<extra_id_33>": 32066, "<extra_id_32>": 32067, "<extra_id_31>": 32068, "<extra_id_30>": 32069, "<extra_id_29>": 32070, "<extra_id_28>": 32071, "<extra_id_27>": 32072, "<extra_id_26>": 32073, "<extra_id_25>": 32074, "<extra_id_24>": 32075, "<extra_id_23>": 32076, "<extra_id_22>": 32077, "<extra_id_21>": 32078, "<extra_id_20>": 32079, "<extra_id_19>": 32080, "<extra_id_18>": 32081, "<extra_id_17>": 32082, "<extra_id_16>": 32083, "<extra_id_15>": 32084, "<extra_id_14>": 32085, "<extra_id_13>": 32086, "<extra_id_12>": 32087, "<extra_id_11>": 32088, "<extra_id_10>": 32089, "<extra_id_9>": 32090, "<extra_id_8>": 32091, "<extra_id_7>": 32092, "<extra_id_6>": 32093, "<extra_id_5>": 32094, "<extra_id_4>": 32095, "<extra_id_3>": 32096, "<extra_id_2>": 32097, "<extra_id_1>": 32098, "<extra_id_0>": 32099}
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/CodeT5/pretrained_models/codet5_small",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "d_ff": 2048,
8
+ "d_kv": 64,
9
+ "d_model": 512,
10
+ "decoder_start_token_id": 0,
11
+ "dropout_rate": 0.1,
12
+ "eos_token_id": 2,
13
+ "feed_forward_proj": "relu",
14
+ "gradient_checkpointing": false,
15
+ "id2label": {
16
+ "0": "LABEL_0"
17
+ },
18
+ "initializer_factor": 1.0,
19
+ "is_encoder_decoder": true,
20
+ "label2id": {
21
+ "LABEL_0": 0
22
+ },
23
+ "layer_norm_epsilon": 1e-06,
24
+ "model_type": "t5",
25
+ "n_positions": 512,
26
+ "num_decoder_layers": 6,
27
+ "num_heads": 8,
28
+ "num_layers": 6,
29
+ "output_past": true,
30
+ "pad_token_id": 0,
31
+ "relative_attention_num_buckets": 32,
32
+ "task_specific_params": {
33
+ "summarization": {
34
+ "early_stopping": true,
35
+ "length_penalty": 2.0,
36
+ "max_length": 200,
37
+ "min_length": 30,
38
+ "no_repeat_ngram_size": 3,
39
+ "num_beams": 4,
40
+ "prefix": "summarize: "
41
+ },
42
+ "translation_en_to_de": {
43
+ "early_stopping": true,
44
+ "max_length": 300,
45
+ "num_beams": 4,
46
+ "prefix": "translate English to German: "
47
+ },
48
+ "translation_en_to_fr": {
49
+ "early_stopping": true,
50
+ "max_length": 300,
51
+ "num_beams": 4,
52
+ "prefix": "translate English to French: "
53
+ },
54
+ "translation_en_to_ro": {
55
+ "early_stopping": true,
56
+ "max_length": 300,
57
+ "num_beams": 4,
58
+ "prefix": "translate English to Romanian: "
59
+ }
60
+ },
61
+ "torch_dtype": "float32",
62
+ "transformers_version": "4.10.2",
63
+ "use_cache": true,
64
+ "vocab_size": 32100
65
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:968fb0f45e1efc8cf3dd50012d1f82ad82098107cbadde2c0fdd8e61bac02908
3
+ size 242026427
special_tokens_map.json ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "single_word": false,
5
+ "lstrip": false,
6
+ "rstrip": false,
7
+ "normalized": true
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "single_word": false,
12
+ "lstrip": false,
13
+ "rstrip": false,
14
+ "normalized": true
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "single_word": false,
19
+ "lstrip": false,
20
+ "rstrip": false,
21
+ "normalized": true
22
+ },
23
+ "sep_token": {
24
+ "content": "</s>",
25
+ "single_word": false,
26
+ "lstrip": false,
27
+ "rstrip": false,
28
+ "normalized": true
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "single_word": false,
33
+ "lstrip": false,
34
+ "rstrip": false,
35
+ "normalized": true
36
+ },
37
+ "cls_token": {
38
+ "content": "<s>",
39
+ "single_word": false,
40
+ "lstrip": false,
41
+ "rstrip": false,
42
+ "normalized": true
43
+ },
44
+ "mask_token": { "content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
45
+ "additional_special_tokens": [
46
+ { "content":"<extra_id_99>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
47
+ { "content":"<extra_id_98>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
48
+ { "content":"<extra_id_97>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
49
+ { "content":"<extra_id_96>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
50
+ { "content":"<extra_id_95>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
51
+ { "content":"<extra_id_94>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
52
+ { "content":"<extra_id_93>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
53
+ { "content":"<extra_id_92>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
54
+ { "content":"<extra_id_91>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
55
+ { "content":"<extra_id_90>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
56
+ { "content":"<extra_id_89>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
57
+ { "content":"<extra_id_88>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
58
+ { "content":"<extra_id_87>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
59
+ { "content":"<extra_id_86>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
60
+ { "content":"<extra_id_85>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
61
+ { "content":"<extra_id_84>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
62
+ { "content":"<extra_id_83>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
63
+ { "content":"<extra_id_82>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
64
+ { "content":"<extra_id_81>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
65
+ { "content":"<extra_id_80>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
66
+ { "content":"<extra_id_79>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
67
+ { "content":"<extra_id_78>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
68
+ { "content":"<extra_id_77>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
69
+ { "content":"<extra_id_76>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
70
+ { "content":"<extra_id_75>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
71
+ { "content":"<extra_id_74>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
72
+ { "content":"<extra_id_73>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
73
+ { "content":"<extra_id_72>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
74
+ { "content":"<extra_id_71>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
75
+ { "content":"<extra_id_70>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
76
+ { "content":"<extra_id_69>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
77
+ { "content":"<extra_id_68>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
78
+ { "content":"<extra_id_67>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
79
+ { "content":"<extra_id_66>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
80
+ { "content":"<extra_id_65>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
81
+ { "content":"<extra_id_64>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
82
+ { "content":"<extra_id_63>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
83
+ { "content":"<extra_id_62>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
84
+ { "content":"<extra_id_61>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
85
+ { "content":"<extra_id_60>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
86
+ { "content":"<extra_id_59>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
87
+ { "content":"<extra_id_58>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
88
+ { "content":"<extra_id_57>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
89
+ { "content":"<extra_id_56>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
90
+ { "content":"<extra_id_55>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
91
+ { "content":"<extra_id_54>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
92
+ { "content":"<extra_id_53>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
93
+ { "content":"<extra_id_52>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
94
+ { "content":"<extra_id_51>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
95
+ { "content":"<extra_id_50>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
96
+ { "content":"<extra_id_49>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
97
+ { "content":"<extra_id_48>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
98
+ { "content":"<extra_id_47>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
99
+ { "content":"<extra_id_46>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
100
+ { "content":"<extra_id_45>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
101
+ { "content":"<extra_id_44>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
102
+ { "content":"<extra_id_43>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
103
+ { "content":"<extra_id_42>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
104
+ { "content":"<extra_id_41>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
105
+ { "content":"<extra_id_40>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
106
+ { "content":"<extra_id_39>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
107
+ { "content":"<extra_id_38>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
108
+ { "content":"<extra_id_37>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
109
+ { "content":"<extra_id_36>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
110
+ { "content":"<extra_id_35>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
111
+ { "content":"<extra_id_34>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
112
+ { "content":"<extra_id_33>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
113
+ { "content":"<extra_id_32>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
114
+ { "content":"<extra_id_31>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
115
+ { "content":"<extra_id_30>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
116
+ { "content":"<extra_id_29>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
117
+ { "content":"<extra_id_28>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
118
+ { "content":"<extra_id_27>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
119
+ { "content":"<extra_id_26>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
120
+ { "content":"<extra_id_25>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
121
+ { "content":"<extra_id_24>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
122
+ { "content":"<extra_id_23>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
123
+ { "content":"<extra_id_22>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
124
+ { "content":"<extra_id_21>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
125
+ { "content":"<extra_id_20>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
126
+ { "content":"<extra_id_19>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
127
+ { "content":"<extra_id_18>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
128
+ { "content":"<extra_id_17>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
129
+ { "content":"<extra_id_16>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
130
+ { "content":"<extra_id_15>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
131
+ { "content":"<extra_id_14>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
132
+ { "content":"<extra_id_13>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
133
+ { "content":"<extra_id_12>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
134
+ { "content":"<extra_id_11>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
135
+ { "content":"<extra_id_10>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
136
+ { "content":"<extra_id_9>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
137
+ { "content":"<extra_id_8>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
138
+ { "content":"<extra_id_7>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
139
+ { "content":"<extra_id_6>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
140
+ { "content":"<extra_id_5>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
141
+ { "content":"<extra_id_4>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
142
+ { "content":"<extra_id_3>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
143
+ { "content":"<extra_id_2>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
144
+ { "content":"<extra_id_1>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true },
145
+ { "content":"<extra_id_0>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true }
146
+ ]
147
+ }
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"errors": "replace", "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "tokenizer_class": "RobertaTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff