BERT_ep9_lr1_v1
This model is a fine-tuned version of ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1282
- Precision: 0.8707
- Recall: 0.8828
- F1: 0.8767
- Accuracy: 0.9792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 467 | 0.0775 | 0.8385 | 0.8618 | 0.8500 | 0.9759 |
0.1072 | 2.0 | 934 | 0.0781 | 0.8293 | 0.8868 | 0.8571 | 0.9770 |
0.0567 | 3.0 | 1401 | 0.0778 | 0.8604 | 0.8787 | 0.8694 | 0.9781 |
0.0356 | 4.0 | 1868 | 0.0868 | 0.8700 | 0.8555 | 0.8627 | 0.9770 |
0.0214 | 5.0 | 2335 | 0.1146 | 0.8525 | 0.8885 | 0.8701 | 0.9767 |
0.0134 | 6.0 | 2802 | 0.1106 | 0.8690 | 0.8806 | 0.8747 | 0.9786 |
0.0078 | 7.0 | 3269 | 0.1112 | 0.8660 | 0.8863 | 0.8760 | 0.9794 |
0.0051 | 8.0 | 3736 | 0.1251 | 0.8685 | 0.8841 | 0.8762 | 0.9790 |
0.0028 | 9.0 | 4203 | 0.1282 | 0.8707 | 0.8828 | 0.8767 | 0.9792 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.