File size: 7,323 Bytes
b4268a4
 
bb24b30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4268a4
 
4e21eea
b4268a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf1122
b4268a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb24b30
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
license: cc-by-nc-4.0
model-index:
- name: Kunoichi-DPO-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.62
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SanjiWatsuki/Kunoichi-DPO-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.14
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SanjiWatsuki/Kunoichi-DPO-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.79
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SanjiWatsuki/Kunoichi-DPO-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 67.31
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SanjiWatsuki/Kunoichi-DPO-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.58
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SanjiWatsuki/Kunoichi-DPO-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=SanjiWatsuki/Kunoichi-DPO-7B
      name: Open LLM Leaderboard
---

![image/png](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-7B/resolve/main/assets/kunoichi2.png)

<!-- description start -->
## Description

This repository hosts **Kunoichi-DPO-7B**, a DPO finetune using Intel's Orca pairs with the Alpaca template on Kunoichi-7B. This model is targeted at general use. In my testing, it has stronger reasoning and instruction following capabilities than Kunoichi-7B but it may be worse for roleplaying purposes due to the alignment from the Orca dataset.

This model is undergoing benchmark testing and I will update the model page with the finalized results.

| Model                | MT Bench | EQ Bench | MMLU   | Logic Test |
|----------------------|----------|----------|---------|-------------|
| GPT-4-Turbo         | 9.32     | -        | -       | -           |
| GPT-4               | 8.99     | 62.52    | 86.4    | 0.86        |
| **Kunoichi-DPO-7B** | **8.29**     | **41.60**    | -    | **0.59**        |
| **Kunoichi-7B**     | **8.14**     | **44.32**    | **64.9**    | **0.58**            |
| Starling-7B         | 8.09     | -        | 63.9    | 0.51        |
| Claude-2            | 8.06     | 52.14    | 78.5    | -           |
| Silicon-Maid-7B     | 7.96     | 40.44    | 64.7    | 0.54           |
| Loyal-Macaroni-Maid-7B | 7.95     | 38.66    | 64.9   | 0.57        |
| GPT-3.5-Turbo       | 7.94     | 50.28    | 70      | 0.57        |
| Claude-1            | 7.9       | -        | 77      | -           |
| Openchat-3.5        | 7.81     | 37.08    | 64.3    | 0.39        |
| Dolphin-2.6-DPO     | 7.74     | 42.88    | 61.9    | 0.53        |
| Zephyr-7B-beta      | 7.34     | 38.71    | 61.4    | 0.30        |
| Llama-2-70b-chat-hf | 6.86     | 51.56    | 63      | -           |
| Neural-chat-7b-v3-1 | 6.84     | 43.61    | 62.4    | 0.30        |

| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| **Kunoichi-DPO-7B**|**58.4**|  45.08 |  74|     66.99|   47.52|
| [Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B)|57.54|  44.99|  74.86|     63.72|   46.58|
| [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)| 56.85 | 44.74 | 75.6 | 59.89 | 47.17 |
| [Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) | 56.45|  44.74|  74.26|      61.5|   45.32|
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)  | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
| [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) | 51.34 | 42.67 | 72.92 | 47.27 | 42.51 |
| [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) | 51.16 | 42.06 | 72.72 | 47.33 | 42.53 |
| [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 50.99 | 37.33 | 71.83 | 55.1 | 39.7 |

The model is intended to be used with up to an 8k context window. Using a NTK RoPE alpha of 2.6, the model can be used experimentally up to a 16k context window.

<!-- description end -->
<!-- prompt-template start -->
## Prompt template: Custom format, or Alpaca

### Alpaca:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:
```

### SillyTavern format:
I found the best SillyTavern results from using the Noromaid template. 

SillyTavern config files: [Context](https://files.catbox.moe/ifmhai.json), [Instruct](https://files.catbox.moe/ttw1l9.json).

Additionally, here is my highly recommended [Text Completion preset](https://huggingface.co/SanjiWatsuki/Loyal-Macaroni-Maid-7B/blob/main/Characters/MinP.json). You can tweak this by adjusting temperature up or dropping min p to boost creativity or raise min p to increase stability. You shouldn't need to touch anything else!

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_SanjiWatsuki__Kunoichi-DPO-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.24|
|AI2 Reasoning Challenge (25-Shot)|69.62|
|HellaSwag (10-Shot)              |87.14|
|MMLU (5-Shot)                    |64.79|
|TruthfulQA (0-shot)              |67.31|
|Winogrande (5-shot)              |80.58|
|GSM8k (5-shot)                   |63.99|