File size: 4,694 Bytes
7ee2ccc 25f6e24 13d8a16 7b42734 25f6e24 7ee2ccc 7b42734 25f6e24 7b42734 25f6e24 7b42734 25f6e24 dab1c5d 25f6e24 dab1c5d 25f6e24 dab1c5d 25f6e24 dab1c5d 25f6e24 2f7732f 485cc60 2f7732f 6b43e2c 2f7732f 25f6e24 2f7732f 25f6e24 2f7732f 25f6e24 2f7732f 25f6e24 2f7732f 25f6e24 2f7732f 25f6e24 2f7732f 25f6e24 7b42734 4231f7a 7b42734 4231f7a 7b42734 4231f7a 7b42734 4231f7a 7b42734 4231f7a 25f6e24 13d8a16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
license: other
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- llama
- decapoda-research-7b-hf
- prompt answering
- peft
---
## Model Card for Model ID
This repository contains a LLaMA-7B further fine-tuned model on conversations and question answering prompts.
This model is a fine-tuned version of [chainyo/alpaca-lora-7b](https://huggingface.co/chainyo/alpaca-lora-7b) on conversations dataset.
⚠️ **I used [LLaMA-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) as a base model, so this model is for Research purpose only (See the [license](https://huggingface.co/decapoda-research/llama-7b-hf/blob/main/LICENSE))**
## Model Details
### Model Description
The decapoda-research/llama-7b-hf model was finetuned on conversations and question answering prompts.
**Developed by:** [More Information Needed]
**Shared by:** [More Information Needed]
**Model type:** Causal LM
**Language(s) (NLP):** English, multilingual
**License:** Research
**Finetuned from model:** decapoda-research/llama-7b-hf
## Model Sources [optional]
**Repository:** [More Information Needed]
**Paper:** [More Information Needed]
**Demo:** [More Information Needed]
## Uses
The model can be used for prompt answering
### Direct Use
The model can be used for prompt answering
### Downstream Use
Generating text and prompt answering
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Usage
## Creating prompt
The model was trained on the following kind of prompt:
```python
def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
if input_ctxt:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_ctxt}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
```
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("Sandiago21/llama-7b-hf-prompt-answering")
model = LlamaForCausalLM.from_pretrained(
"Sandiago21/llama-7b-hf-prompt-answering",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
)
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
```
### Example of Usage
```python
instruction = "What is the capital city of Greece and with which countries does Greece border?"
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response)
>>> The capital city of Greece is Athens and it borders Albania, Macedonia, Bulgaria and Turkey.
```
## Training Details
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.12.1
### Training Data
The decapoda-research/llama-7b-hf was finetuned on conversations and question answering data
### Training Procedure
The decapoda-research/llama-7b-hf model was further trained and finetuned on question answering and prompts data for 1 epoch (approximately 10 hours of training on a single GPU)
## Model Architecture and Objective
The model is based on decapoda-research/llama-7b-hf model and finetuned adapters on top of the main model on conversations and question answering data. |