File size: 2,689 Bytes
718be7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-large-ls960-ft-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-large-ls960-ft-finetuned-gtzan

This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Accuracy: 0.8

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2564        | 1.0   | 112  | 2.2597          | 0.37     |
| 1.6529        | 2.0   | 225  | 1.8087          | 0.27     |
| 1.4922        | 3.0   | 337  | 1.4067          | 0.48     |
| 1.3749        | 4.0   | 450  | 1.3045          | 0.55     |
| 0.9226        | 5.0   | 562  | 1.1160          | 0.64     |
| 0.8591        | 6.0   | 675  | 0.8981          | 0.69     |
| 0.5988        | 7.0   | 787  | 0.9898          | 0.71     |
| 1.0143        | 8.0   | 900  | 1.0200          | 0.69     |
| 0.464         | 9.0   | 1012 | 0.5678          | 0.82     |
| 0.6969        | 10.0  | 1125 | 0.7087          | 0.81     |
| 0.5547        | 11.0  | 1237 | 0.7278          | 0.75     |
| 0.2638        | 12.0  | 1350 | 0.7599          | 0.8      |
| 0.3504        | 13.0  | 1462 | 0.6778          | 0.85     |
| 0.106         | 14.0  | 1575 | 0.7504          | 0.82     |
| 0.3392        | 15.0  | 1687 | 0.7514          | 0.84     |
| 0.1516        | 16.0  | 1800 | 0.8678          | 0.8      |
| 0.1324        | 17.0  | 1912 | 0.7644          | 0.84     |
| 0.0827        | 18.0  | 2025 | nan             | 0.8      |
| 0.45          | 19.0  | 2137 | nan             | 0.8      |
| 0.2407        | 19.91 | 2240 | nan             | 0.8      |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3