bert-finetuned-mutation-recognition-3

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0727
  • Dnamutation F1: 0.6484
  • Proteinmutation F1: 0.8571
  • Snp F1: 1.0
  • Precision: 0.7966
  • Recall: 0.7625
  • F1: 0.7792
  • Accuracy: 0.9872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Dnamutation F1 Proteinmutation F1 Snp F1 Precision Recall F1 Accuracy
No log 1.0 324 0.0323 0.5996 0.7886 1.0 0.6583 0.7982 0.7215 0.9901
0.0788 2.0 648 0.0314 0.6765 0.8783 1.0 0.7453 0.8571 0.7973 0.9907
0.0788 3.0 972 0.0306 0.6391 0.8679 1.0 0.7341 0.8232 0.7761 0.9903
0.0273 4.0 1296 0.0424 0.6360 0.8714 1.0 0.7792 0.775 0.7771 0.9885
0.0178 5.0 1620 0.0462 0.5885 0.8683 1.0 0.7576 0.7589 0.7583 0.9869
0.0178 6.0 1944 0.0531 0.6176 0.8701 1.0 0.7734 0.7679 0.7706 0.9873
0.0165 7.0 2268 0.0573 0.6597 0.8658 1.0 0.8022 0.775 0.7884 0.9881
0.0144 8.0 2592 0.0636 0.6596 0.8454 1.0 0.7919 0.7679 0.7797 0.9871
0.0144 9.0 2916 0.0710 0.6568 0.8748 1.0 0.8159 0.7679 0.7912 0.9872
0.0108 10.0 3240 0.0727 0.6484 0.8571 1.0 0.7966 0.7625 0.7792 0.9872

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2
  • Datasets 2.0.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.