MixQG (3b-sized model)
MixQG is a new question generation model pre-trained on a collection of QA datasets with a mix of answer types. It was introduced in the paper MixQG: Neural Question Generation with Mixed Answer Types and the associated code is released in this repository.
How to use
Using Huggingface pipeline abstraction:
from transformers import pipeline
nlp = pipeline("text2text-generation", model='Salesforce/mixqg-3b', tokenizer='Salesforce/mixqg-3b')
CONTEXT = "In the late 17th century, Robert Boyle proved that air is necessary for combustion."
ANSWER = "Robert Boyle"
def format_inputs(context: str, answer: str):
return f"{answer} \\n {context}"
text = format_inputs(CONTEXT, ANSWER)
nlp(text)
# should output [{'generated_text': 'Who proved that air is necessary for combustion?'}]
Using the pre-trained model directly:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained('Salesforce/mixqg-3b')
model = AutoModelForSeq2SeqLM.from_pretrained('Salesforce/mixqg-3b')
CONTEXT = "In the late 17th century, Robert Boyle proved that air is necessary for combustion."
ANSWER = "Robert Boyle"
def format_inputs(context: str, answer: str):
return f"{answer} \\n {context}"
text = format_inputs(CONTEXT, ANSWER)
input_ids = tokenizer(text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=32, num_beams=4)
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(output)
# should output "Who proved that air is necessary for combustion?"
Citation
@misc{murakhovska2021mixqg,
title={MixQG: Neural Question Generation with Mixed Answer Types},
author={Lidiya Murakhovs'ka and Chien-Sheng Wu and Tong Niu and Wenhao Liu and Caiming Xiong},
year={2021},
eprint={2110.08175},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 932
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.