pretrained_qa_model

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.6367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
7.7719 16.6667 50 3.3236
2.8253 33.3333 100 3.3940
1.9882 50.0 150 3.9482
1.4762 66.6667 200 3.6320
1.4392 83.3333 250 6.2485
1.2776 100.0 300 4.3183
1.251 116.6667 350 4.1987
1.2782 133.3333 400 4.5603
1.0958 150.0 450 8.2640
1.0485 166.6667 500 5.5495
1.054 183.3333 550 5.3635
1.1684 200.0 600 1.8302
1.109 216.6667 650 6.1931
1.1607 233.3333 700 3.2514
1.0009 250.0 750 3.3236
1.2045 266.6667 800 10.1146
1.1297 283.3333 850 6.5903
0.9679 300.0 900 4.6367

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Sai-Harsha-k/pretrained_qa_model

Finetuned
(8149)
this model