pretrained_qa_model
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.6367
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 300
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.7719 | 16.6667 | 50 | 3.3236 |
2.8253 | 33.3333 | 100 | 3.3940 |
1.9882 | 50.0 | 150 | 3.9482 |
1.4762 | 66.6667 | 200 | 3.6320 |
1.4392 | 83.3333 | 250 | 6.2485 |
1.2776 | 100.0 | 300 | 4.3183 |
1.251 | 116.6667 | 350 | 4.1987 |
1.2782 | 133.3333 | 400 | 4.5603 |
1.0958 | 150.0 | 450 | 8.2640 |
1.0485 | 166.6667 | 500 | 5.5495 |
1.054 | 183.3333 | 550 | 5.3635 |
1.1684 | 200.0 | 600 | 1.8302 |
1.109 | 216.6667 | 650 | 6.1931 |
1.1607 | 233.3333 | 700 | 3.2514 |
1.0009 | 250.0 | 750 | 3.3236 |
1.2045 | 266.6667 | 800 | 10.1146 |
1.1297 | 283.3333 | 850 | 6.5903 |
0.9679 | 300.0 | 900 | 4.6367 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Sai-Harsha-k/pretrained_qa_model
Base model
distilbert/distilbert-base-uncased