layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6608
  • Answer: {'precision': 0.7201783723522854, 'recall': 0.7985166872682324, 'f1': 0.7573270808909731, 'number': 809}
  • Header: {'precision': 0.31932773109243695, 'recall': 0.31932773109243695, 'f1': 0.31932773109243695, 'number': 119}
  • Question: {'precision': 0.7643478260869565, 'recall': 0.8253521126760563, 'f1': 0.7936794582392775, 'number': 1065}
  • Overall Precision: 0.7216
  • Overall Recall: 0.7842
  • Overall F1: 0.7516
  • Overall Accuracy: 0.8167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8317 1.0 10 1.6104 {'precision': 0.027842227378190254, 'recall': 0.029666254635352288, 'f1': 0.02872531418312388, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2206047032474804, 'recall': 0.18497652582159624, 'f1': 0.20122574055158324, 'number': 1065} 0.1259 0.1109 0.1179 0.3482
1.4526 2.0 20 1.2629 {'precision': 0.2147165259348613, 'recall': 0.2200247218788628, 'f1': 0.21733821733821734, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.45054095826893353, 'recall': 0.5474178403755868, 'f1': 0.4942772361169987, 'number': 1065} 0.3585 0.3818 0.3698 0.5749
1.0991 3.0 30 0.9508 {'precision': 0.4650856389986825, 'recall': 0.4363411619283066, 'f1': 0.45025510204081637, 'number': 809} {'precision': 0.05128205128205128, 'recall': 0.01680672268907563, 'f1': 0.025316455696202535, 'number': 119} {'precision': 0.6182287188306105, 'recall': 0.6751173708920187, 'f1': 0.6454219030520646, 'number': 1065} 0.5477 0.5389 0.5432 0.7030
0.8223 4.0 40 0.7675 {'precision': 0.5823863636363636, 'recall': 0.7601977750309024, 'f1': 0.6595174262734583, 'number': 809} {'precision': 0.1774193548387097, 'recall': 0.09243697478991597, 'f1': 0.12154696132596685, 'number': 119} {'precision': 0.6633249791144528, 'recall': 0.7455399061032864, 'f1': 0.7020335985853228, 'number': 1065} 0.6134 0.7125 0.6592 0.7615
0.6605 5.0 50 0.6992 {'precision': 0.6135662898252826, 'recall': 0.7379480840543882, 'f1': 0.6700336700336701, 'number': 809} {'precision': 0.273972602739726, 'recall': 0.16806722689075632, 'f1': 0.20833333333333331, 'number': 119} {'precision': 0.7077865266841645, 'recall': 0.7596244131455399, 'f1': 0.7327898550724637, 'number': 1065} 0.6514 0.7155 0.6820 0.7834
0.5625 6.0 60 0.6647 {'precision': 0.6484784889821616, 'recall': 0.7639060568603214, 'f1': 0.7014755959137344, 'number': 809} {'precision': 0.25, 'recall': 0.24369747899159663, 'f1': 0.24680851063829787, 'number': 119} {'precision': 0.7197032151690025, 'recall': 0.819718309859155, 'f1': 0.7664618086040387, 'number': 1065} 0.6661 0.7627 0.7111 0.7955
0.4838 7.0 70 0.6497 {'precision': 0.6606189967982924, 'recall': 0.765142150803461, 'f1': 0.7090492554410079, 'number': 809} {'precision': 0.29896907216494845, 'recall': 0.24369747899159663, 'f1': 0.2685185185185185, 'number': 119} {'precision': 0.7332775919732442, 'recall': 0.8234741784037559, 'f1': 0.7757629367536488, 'number': 1065} 0.6839 0.7652 0.7222 0.8043
0.4394 8.0 80 0.6342 {'precision': 0.6813778256189451, 'recall': 0.7824474660074165, 'f1': 0.7284234752589184, 'number': 809} {'precision': 0.30701754385964913, 'recall': 0.29411764705882354, 'f1': 0.30042918454935624, 'number': 119} {'precision': 0.7540425531914894, 'recall': 0.831924882629108, 'f1': 0.7910714285714286, 'number': 1065} 0.7006 0.7797 0.7381 0.8090
0.3871 9.0 90 0.6447 {'precision': 0.7117516629711752, 'recall': 0.7935723114956736, 'f1': 0.750438340151958, 'number': 809} {'precision': 0.35, 'recall': 0.29411764705882354, 'f1': 0.31963470319634707, 'number': 119} {'precision': 0.7660510114335972, 'recall': 0.8178403755868544, 'f1': 0.7910990009082652, 'number': 1065} 0.7237 0.7767 0.7493 0.8132
0.3503 10.0 100 0.6390 {'precision': 0.7056892778993435, 'recall': 0.7972805933250927, 'f1': 0.7486941381311665, 'number': 809} {'precision': 0.3431372549019608, 'recall': 0.29411764705882354, 'f1': 0.31674208144796384, 'number': 119} {'precision': 0.7638888888888888, 'recall': 0.8262910798122066, 'f1': 0.7938655841226885, 'number': 1065} 0.7196 0.7827 0.7498 0.8160
0.3196 11.0 110 0.6503 {'precision': 0.7168338907469343, 'recall': 0.7948084054388134, 'f1': 0.753810082063306, 'number': 809} {'precision': 0.29464285714285715, 'recall': 0.2773109243697479, 'f1': 0.28571428571428575, 'number': 119} {'precision': 0.7765862377122431, 'recall': 0.815962441314554, 'f1': 0.7957875457875458, 'number': 1065} 0.7260 0.7752 0.7498 0.8155
0.3023 12.0 120 0.6432 {'precision': 0.7020810514786419, 'recall': 0.792336217552534, 'f1': 0.7444831591173056, 'number': 809} {'precision': 0.3181818181818182, 'recall': 0.29411764705882354, 'f1': 0.3056768558951965, 'number': 119} {'precision': 0.7600341588385995, 'recall': 0.8356807511737089, 'f1': 0.7960644007155636, 'number': 1065} 0.7138 0.7858 0.7480 0.8181
0.289 13.0 130 0.6666 {'precision': 0.7231638418079096, 'recall': 0.7911001236093943, 'f1': 0.755608028335301, 'number': 809} {'precision': 0.29838709677419356, 'recall': 0.31092436974789917, 'f1': 0.3045267489711935, 'number': 119} {'precision': 0.7837837837837838, 'recall': 0.8169014084507042, 'f1': 0.8, 'number': 1065} 0.7301 0.7762 0.7524 0.8184
0.27 14.0 140 0.6599 {'precision': 0.7224080267558528, 'recall': 0.8009888751545118, 'f1': 0.7596717467760844, 'number': 809} {'precision': 0.32456140350877194, 'recall': 0.31092436974789917, 'f1': 0.31759656652360513, 'number': 119} {'precision': 0.763840830449827, 'recall': 0.8291079812206573, 'f1': 0.7951373255290409, 'number': 1065} 0.7236 0.7868 0.7538 0.8159
0.2686 15.0 150 0.6608 {'precision': 0.7201783723522854, 'recall': 0.7985166872682324, 'f1': 0.7573270808909731, 'number': 809} {'precision': 0.31932773109243695, 'recall': 0.31932773109243695, 'f1': 0.31932773109243695, 'number': 119} {'precision': 0.7643478260869565, 'recall': 0.8253521126760563, 'f1': 0.7936794582392775, 'number': 1065} 0.7216 0.7842 0.7516 0.8167

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
78
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sagar0934/layoutlm-funsd

Finetuned
(146)
this model