segformerSAAD2
This model is a fine-tuned version of nvidia/mit-b0 on the Saad287/SixGUN dataset. It achieves the following results on the evaluation set:
- Loss: 0.0658
- Mean Iou: 0.8885
- Mean Accuracy: 0.9302
- Overall Accuracy: 0.9934
- Accuracy Bkg: 0.9977
- Accuracy Knife: 0.8700
- Accuracy Gun: 0.9228
- Iou Bkg: 0.9940
- Iou Knife: 0.8345
- Iou Gun: 0.8370
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 23
- eval_batch_size: 23
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9085 | 10.0 | 10 | 1.0050 | 0.5155 | 0.9279 | 0.9160 | 0.9152 | 0.9126 | 0.9559 | 0.9144 | 0.3135 | 0.3185 |
0.7013 | 20.0 | 20 | 0.8010 | 0.6030 | 0.8080 | 0.9590 | 0.9692 | 0.6715 | 0.7832 | 0.9590 | 0.4442 | 0.4060 |
0.5991 | 30.0 | 30 | 0.6384 | 0.6286 | 0.7939 | 0.9648 | 0.9765 | 0.6946 | 0.7107 | 0.9647 | 0.5156 | 0.4054 |
0.5105 | 40.0 | 40 | 0.5393 | 0.6328 | 0.8246 | 0.9632 | 0.9727 | 0.7618 | 0.7393 | 0.9631 | 0.5383 | 0.3970 |
0.4642 | 50.0 | 50 | 0.4625 | 0.6478 | 0.8186 | 0.9668 | 0.9769 | 0.7866 | 0.6922 | 0.9666 | 0.5662 | 0.4108 |
0.4301 | 60.0 | 60 | 0.4175 | 0.6580 | 0.8092 | 0.9696 | 0.9805 | 0.7819 | 0.6650 | 0.9693 | 0.5757 | 0.4291 |
0.3623 | 70.0 | 70 | 0.3713 | 0.7008 | 0.8249 | 0.9758 | 0.9861 | 0.7827 | 0.7061 | 0.9757 | 0.6257 | 0.5010 |
0.3356 | 80.0 | 80 | 0.3247 | 0.7648 | 0.8740 | 0.9825 | 0.9899 | 0.8066 | 0.8254 | 0.9827 | 0.6695 | 0.6422 |
0.2975 | 90.0 | 90 | 0.2862 | 0.7936 | 0.8754 | 0.9857 | 0.9932 | 0.8001 | 0.8330 | 0.9860 | 0.6986 | 0.6962 |
0.2722 | 100.0 | 100 | 0.2656 | 0.8099 | 0.8962 | 0.9869 | 0.9931 | 0.8202 | 0.8753 | 0.9873 | 0.7126 | 0.7296 |
0.2465 | 110.0 | 110 | 0.2377 | 0.8192 | 0.8904 | 0.9880 | 0.9946 | 0.8170 | 0.8597 | 0.9884 | 0.7251 | 0.7440 |
0.2221 | 120.0 | 120 | 0.2163 | 0.8311 | 0.9018 | 0.9889 | 0.9949 | 0.8265 | 0.8840 | 0.9895 | 0.7391 | 0.7648 |
0.2082 | 130.0 | 130 | 0.2007 | 0.8341 | 0.8971 | 0.9892 | 0.9955 | 0.8297 | 0.8662 | 0.9896 | 0.7500 | 0.7628 |
0.1974 | 140.0 | 140 | 0.1928 | 0.8462 | 0.9026 | 0.9901 | 0.9961 | 0.8390 | 0.8729 | 0.9906 | 0.7685 | 0.7795 |
0.1823 | 150.0 | 150 | 0.1720 | 0.8464 | 0.8974 | 0.9903 | 0.9966 | 0.8324 | 0.8632 | 0.9907 | 0.7710 | 0.7775 |
0.1743 | 160.0 | 160 | 0.1598 | 0.8533 | 0.9014 | 0.9908 | 0.9969 | 0.8307 | 0.8766 | 0.9913 | 0.7799 | 0.7888 |
0.1577 | 170.0 | 170 | 0.1560 | 0.8592 | 0.9150 | 0.9911 | 0.9963 | 0.8514 | 0.8973 | 0.9917 | 0.7892 | 0.7967 |
0.1468 | 180.0 | 180 | 0.1432 | 0.8632 | 0.9079 | 0.9915 | 0.9972 | 0.8406 | 0.8858 | 0.9920 | 0.7964 | 0.8012 |
0.1397 | 190.0 | 190 | 0.1323 | 0.8641 | 0.9128 | 0.9915 | 0.9969 | 0.8503 | 0.8911 | 0.9920 | 0.7993 | 0.8009 |
0.1305 | 200.0 | 200 | 0.1264 | 0.8659 | 0.9102 | 0.9917 | 0.9972 | 0.8468 | 0.8867 | 0.9922 | 0.8024 | 0.8032 |
0.1228 | 210.0 | 210 | 0.1209 | 0.8730 | 0.9188 | 0.9922 | 0.9972 | 0.8552 | 0.9038 | 0.9927 | 0.8119 | 0.8144 |
0.1179 | 220.0 | 220 | 0.1123 | 0.8730 | 0.9172 | 0.9922 | 0.9973 | 0.8527 | 0.9016 | 0.9928 | 0.8128 | 0.8133 |
0.1126 | 230.0 | 230 | 0.1078 | 0.8742 | 0.9203 | 0.9923 | 0.9972 | 0.8568 | 0.9069 | 0.9929 | 0.8148 | 0.8149 |
0.1066 | 240.0 | 240 | 0.1029 | 0.8758 | 0.9216 | 0.9924 | 0.9972 | 0.8587 | 0.9090 | 0.9930 | 0.8176 | 0.8169 |
0.1026 | 250.0 | 250 | 0.0978 | 0.8786 | 0.9224 | 0.9926 | 0.9974 | 0.8648 | 0.9050 | 0.9931 | 0.8230 | 0.8197 |
0.1012 | 260.0 | 260 | 0.0963 | 0.8797 | 0.9271 | 0.9927 | 0.9972 | 0.8659 | 0.9182 | 0.9933 | 0.8242 | 0.8217 |
0.0952 | 270.0 | 270 | 0.0926 | 0.8800 | 0.9229 | 0.9927 | 0.9975 | 0.8607 | 0.9104 | 0.9933 | 0.8250 | 0.8218 |
0.0938 | 280.0 | 280 | 0.0895 | 0.8819 | 0.9238 | 0.9929 | 0.9975 | 0.8649 | 0.9090 | 0.9934 | 0.8284 | 0.8237 |
0.0893 | 290.0 | 290 | 0.0860 | 0.8832 | 0.9260 | 0.9930 | 0.9975 | 0.8686 | 0.9120 | 0.9935 | 0.8301 | 0.8261 |
0.0868 | 300.0 | 300 | 0.0835 | 0.8831 | 0.9243 | 0.9930 | 0.9976 | 0.8646 | 0.9106 | 0.9935 | 0.8301 | 0.8257 |
0.0853 | 310.0 | 310 | 0.0820 | 0.8834 | 0.9257 | 0.9930 | 0.9975 | 0.8664 | 0.9132 | 0.9936 | 0.8307 | 0.8260 |
0.0817 | 320.0 | 320 | 0.0786 | 0.8867 | 0.9291 | 0.9932 | 0.9976 | 0.8707 | 0.9190 | 0.9938 | 0.8343 | 0.8319 |
0.0823 | 330.0 | 330 | 0.0785 | 0.8851 | 0.9261 | 0.9931 | 0.9977 | 0.8677 | 0.9129 | 0.9937 | 0.8326 | 0.8291 |
0.0858 | 340.0 | 340 | 0.0768 | 0.8860 | 0.9272 | 0.9932 | 0.9976 | 0.8680 | 0.9159 | 0.9938 | 0.8330 | 0.8312 |
0.078 | 350.0 | 350 | 0.0744 | 0.8853 | 0.9253 | 0.9931 | 0.9977 | 0.8648 | 0.9133 | 0.9937 | 0.8315 | 0.8308 |
0.0755 | 360.0 | 360 | 0.0739 | 0.8872 | 0.9290 | 0.9933 | 0.9976 | 0.8694 | 0.9201 | 0.9939 | 0.8337 | 0.8342 |
0.0752 | 370.0 | 370 | 0.0727 | 0.8880 | 0.9307 | 0.9933 | 0.9976 | 0.8721 | 0.9224 | 0.9939 | 0.8351 | 0.8349 |
0.0727 | 380.0 | 380 | 0.0719 | 0.8858 | 0.9269 | 0.9932 | 0.9977 | 0.8665 | 0.9166 | 0.9938 | 0.8318 | 0.8318 |
0.0725 | 390.0 | 390 | 0.0709 | 0.8873 | 0.9298 | 0.9933 | 0.9976 | 0.8705 | 0.9215 | 0.9939 | 0.8347 | 0.8333 |
0.0725 | 400.0 | 400 | 0.0695 | 0.8870 | 0.9283 | 0.9933 | 0.9977 | 0.8686 | 0.9188 | 0.9939 | 0.8331 | 0.8340 |
0.0718 | 410.0 | 410 | 0.0689 | 0.8890 | 0.9309 | 0.9934 | 0.9976 | 0.8706 | 0.9244 | 0.9940 | 0.8351 | 0.8378 |
0.0695 | 420.0 | 420 | 0.0679 | 0.8872 | 0.9284 | 0.9933 | 0.9977 | 0.8689 | 0.9186 | 0.9939 | 0.8335 | 0.8341 |
0.0707 | 430.0 | 430 | 0.0676 | 0.8881 | 0.9307 | 0.9933 | 0.9976 | 0.8686 | 0.9258 | 0.9940 | 0.8334 | 0.8370 |
0.0684 | 440.0 | 440 | 0.0668 | 0.8883 | 0.9298 | 0.9934 | 0.9977 | 0.8693 | 0.9225 | 0.9940 | 0.8339 | 0.8372 |
0.0692 | 450.0 | 450 | 0.0668 | 0.8887 | 0.9310 | 0.9934 | 0.9976 | 0.8708 | 0.9245 | 0.9940 | 0.8350 | 0.8372 |
0.0681 | 460.0 | 460 | 0.0661 | 0.8889 | 0.9296 | 0.9934 | 0.9977 | 0.8696 | 0.9216 | 0.9940 | 0.8344 | 0.8382 |
0.0688 | 470.0 | 470 | 0.0661 | 0.8888 | 0.9305 | 0.9934 | 0.9977 | 0.8708 | 0.9230 | 0.9940 | 0.8352 | 0.8372 |
0.0675 | 480.0 | 480 | 0.0659 | 0.8888 | 0.9307 | 0.9934 | 0.9976 | 0.8717 | 0.9228 | 0.9940 | 0.8353 | 0.8370 |
0.0679 | 490.0 | 490 | 0.0659 | 0.8886 | 0.9300 | 0.9934 | 0.9977 | 0.8708 | 0.9214 | 0.9940 | 0.8352 | 0.8367 |
0.0668 | 500.0 | 500 | 0.0658 | 0.8885 | 0.9302 | 0.9934 | 0.9977 | 0.8700 | 0.9228 | 0.9940 | 0.8345 | 0.8370 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Saad287/segformerSAAD2
Base model
nvidia/mit-b0