File size: 15,295 Bytes
7c05349
2db079a
00aef68
 
 
 
2db079a
00aef68
27cc586
1451c6b
 
85ab8ff
 
 
1451c6b
85ab8ff
47aff61
 
 
 
5137c15
 
47aff61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcb689
47aff61
 
 
 
21c5d23
 
 
47aff61
 
 
 
 
 
 
 
 
 
1451c6b
47aff61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451c6b
47aff61
1ff90ee
21e60ba
 
1ff90ee
fc81805
 
 
 
 
 
 
 
bdcb689
 
 
 
 
 
 
5137c15
 
47aff61
bdcb689
 
47aff61
bdcb689
47aff61
1451c6b
d5ab356
47aff61
bdcb689
 
 
 
 
 
 
 
 
 
 
 
 
1451c6b
 
 
 
bdcb689
1451c6b
 
45bd89b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcb689
1451c6b
 
 
 
 
 
47aff61
1451c6b
3e6cdea
1451c6b
 
 
 
 
 
 
bdcb689
 
 
1451c6b
 
 
 
 
 
 
3e6cdea
5137c15
 
d5ab356
3e6cdea
bdcb689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e903c71
bdcb689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e903c71
 
bdcb689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e903c71
 
 
 
 
 
 
 
bdcb689
 
 
e903c71
 
 
 
 
 
 
 
bdcb689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451c6b
3e6cdea
1451c6b
 
 
3e6cdea
bdcb689
 
 
3e6cdea
bdcb689
 
 
3e6cdea
47aff61
 
 
 
5137c15
47aff61
 
 
 
3e6cdea
 
47aff61
d431c85
3e6cdea
47aff61
 
 
 
3e6cdea
47aff61
3e6cdea
85ab8ff
 
 
 
47aff61
85ab8ff
47aff61
3e6cdea
47aff61
3e6cdea
47aff61
3e6cdea
47aff61
3e6cdea
85ab8ff
 
 
 
47aff61
85ab8ff
47aff61
3e6cdea
47aff61
 
3e6cdea
1451c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcb689
e903c71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
---
widget:
- example_title: SUS-Chat
  text: hi
  output:
    text: ' Hello! How can I assist you today?'
pipeline_tag: text-generation
license: apache-2.0
---
# 🐷SUS-Chat: Instruction tuning done right

<p align="left">
<a href="README_CN.md">中文</a>&nbsp | &nbspEnglish&nbsp
</p>

<br><br>

<div align="center">

<p align="center">
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/sustech.svg?sanitize=true" width="200px">
<img src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/ccnl.png?sanitize=true" width="200px">
</p>

<div style="display: inline-block;">

<a rel="noopener nofollow" href="https://github.com/SUSTech-IDEA/SUS-Chat/issues">
<img src="https://img.shields.io/github/issues/SUSTech-IDEA/SUS-Chat?logo=github" style="margin: 0 0;">
</a>

</div>

<div style="display: inline-block;">

<a href="https://huggingface.co/SUSTech">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-SUSTech-blue" style="margin: 0 0;">
</a>

</div>

<div style="display: inline-block;">

<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
<img src="https://img.shields.io/badge/🤖ModelScope-sustc-blue" style="margin: 0 0;">
</a>

</div>

<a href="https://wisemodel.cn/organization/SUSTech">
<img src="https://img.shields.io/badge/WiseModel-SUSTech-blue"> </a>

<div style="display: inline-block;">

<a rel="noopener nofollow" href="https://github.com/SUSTech-IDEA/SUS-Chat/blob/main/LICENSE">
<img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue" style="margin: 0 0;">
</a>

</div>

<div style="display: inline-block;">

<a rel="noopener nofollow" href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
<img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue" style="margin: 0 0;">
</a>

</div>

<div style="display: inline-block;">

<a rel="noopener nofollow" href="mailto:oss@data.sustech.edu.cn">
<img src="https://img.shields.io/badge/✉️-data@sustech.edu.cn-FFE01B" style="margin: 0 0;">
</a>

</div>

</div>

# News

- 2024-1-04: 🔥 `cloudyu` created a series of top ranked
  [MOE](https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B) based on our
  model

- 2023-12-09: 🔥 `Tigerbot` variant has been
  [deleted](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/438),
  `SUS-Chat-34B` is now the the top-ranked LLaMA model and the
  top-ranked chat model.

- 2023-12-07: SUS-Chat-34B is now available on
  [WiseModel🧠](https://wisemodel.cn/model/SUSTech/SUS-Chat-34B).

- 2023-12-06: Try [SUS-Chat-34B
  chat-ui](https://huggingface.co/spaces/SUSTech/SUS-Chat-34B).

- 2023-12-05: SUS-Chat-34B is now available on
  [ModelScope🤖](https://www.modelscope.cn/models/SUSTC/SUS-Chat-34B/summary)

- 2023-12-05: SUS-Chat-34B is ranked 2nd in [Open LLM
  leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
  and surpassed all models under 70B.

- 2023-12-01: SUS-Chat-34B is now available on
  [HuggingFace🤗](https://huggingface.co/SUSTech/SUS-Chat-34B).

# Introduction

<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
alt="Figure 1: DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra" />

**SUS-Chat-34B** is a 34B bilingual Chinese-English dialogue model,
jointly released by the **[Southern University of Science and
Technology](https://huggingface.co/SUSTech)** and
**[IDEA-CCNL](https://huggingface.co/IDEA-CCNL)**. This model is based
on [`01-ai/Yi-34B`](https://huggingface.co/01-ai/Yi-34B) and has been
fine-tuned on millions of high-quality, multilingual instruction data.
While maintaining the strong language capabilities of the base model,
the SUS-Chat-34B model has improved the model’s response to human
instructions through high-quality instruction fine-tuning and excels at
imitating human thought processes through chains of thought. It
introduces inter-instruction attention sharing in long texts, expanding
the window size from 4K to 8K, significantly enhancing the usability of
multi-turn dialogues.

It has surpassed all models of the same size in almost all benchmark
tests and is better suited to meet the practical needs of complex
multilingual tasks. Compared to larger models, SUS-Chat-34B remains
highly competitive and has achieved state-of-the-art performance in our
comprehensive evaluations.

SUS-Chat-34B model has the following highlights:

1.  Large-scale complex instruction following data: Trained with 1.4
    billion tokens of high-quality complex instruction data, covering
    Chinese and English, multi-turn dialogues, mathematics, reasoning,
    and various other types of instruction data;
2.  Strong performance in general tasks: The SUS-Chat-34B model excels
    in numerous mainstream Chinese and English tasks, surpassing other
    open-source instruction fine-tuned models of the same parameter
    scale. It also competes well against models with larger parameter
    scales;
3.  Longer context window and excellent multi-turn dialogue
    capabilities: Currently, SUS-Chat-34B supports an 8K context window,
    and is trained with a large amount of multi-turn instruction and
    single-multi-turn mixed data, demonstrating remarkable capabilities
    in long-text dialogue information focus and instruction follow-up.

SUS-Chat powerfully demonstrates that through the right instruction
fine-tuning, academic institutions can achieve better performance
without increasing model parameters, using open-source datasets and
models. This bridges the gap between academia and industry in large
language models and opens new possibilities for collaboration between
academic and industrial sectors.

# Performance

To better evaluate the performance of the SUS-Chat-34B model, we
conducted assessments across multiple benchmark tests and have
open-sourced the evaluation framework
[TLEM](https://huggingface.co/spaces/SUSTech/tlem) to facilitate
replication and comparison by other researchers.

In TLEM, we utilized various benchmark tests including MMLU, CMMLU,
C-Eval, BBH, GSM-8K, and MATH, to measure the model’s knowledge and
thinking capabilities. In these metrics, the SUS-Chat-34B model achieved
state-of-the-art performance. Additionally, we incorporated
[lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) to test
SUS-Chat and similar models on winogrande, hellaswag, arc, and
truthful-qa, assessing the model’s common-sense reasoning ability and
susceptibility to illusions.

Overall, the SUS-Chat-34B model significantly outperformed models of
similar scale and achieved the most advanced comprehensive performance.

<img
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
id="fig-bench" alt="Figure 2: Benchmark" />

<div>

<table>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="odd">
<td style="text-align: center;"><div width="50.0%"
data-layout-align="center">
<h2 id="english-understanding">English Understanding</h2>
<table>
<thead>
<tr class="header">
<th style="text-align: right;">Model</th>
<th style="text-align: center;">mmlu (0-shot)</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: right;">GPT-4</td>
<td style="text-align: center;">83</td>
</tr>
<tr class="even">
<td style="text-align: right;">SUS-Chat-34B</td>
<td style="text-align: center;"><u>74.35</u></td>
</tr>
<tr class="odd">
<td style="text-align: right;">Qwen-72b-Chat</td>
<td style="text-align: center;"><strong>74.52</strong></td>
</tr>
<tr class="even">
<td style="text-align: right;">Deepseek-68b-Chat</td>
<td style="text-align: center;">69.43</td>
</tr>
<tr class="odd">
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
<td style="text-align: center;">68.51</td>
</tr>
<tr class="even">
<td style="text-align: right;">Yi-34B-Chat</td>
<td style="text-align: center;">66.96</td>
</tr>
</tbody>
</table>
</div></td>
<td style="text-align: center;"><div width="50.0%"
data-layout-align="center">
<h2 id="chinese-capabilities">Chinese Capabilities</h2>
<table>
<colgroup>
<col style="width: 34%" />
<col style="width: 32%" />
<col style="width: 32%" />
</colgroup>
<thead>
<tr class="header">
<th style="text-align: right;">Model</th>
<th style="text-align: center;">cmmlu (0-shot)</th>
<th style="text-align: center;">C-Eval (0-shot)<a href="#fn1"
class="footnote-ref" id="fnref1"
role="doc-noteref"><sup>1</sup></a></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: right;">GPT-4</td>
<td style="text-align: center;">71</td>
<td style="text-align: center;">69.9</td>
</tr>
<tr class="even">
<td style="text-align: right;">SUS-Chat-34B</td>
<td style="text-align: center;"><strong>78.68</strong></td>
<td style="text-align: center;"><strong>82.42</strong></td>
</tr>
<tr class="odd">
<td style="text-align: right;">Qwen-72b-Chat</td>
<td style="text-align: center;"><u>77.02</u></td>
<td style="text-align: center;"><u>77.22</u></td>
</tr>
<tr class="even">
<td style="text-align: right;">Deepseek-68b-Chat</td>
<td style="text-align: center;">48.51</td>
<td style="text-align: center;">59.7</td>
</tr>
<tr class="odd">
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
<td style="text-align: center;">66.88</td>
<td style="text-align: center;">65.13</td>
</tr>
<tr class="even">
<td style="text-align: right;">Yi-34B-Chat</td>
<td style="text-align: center;">55.16</td>
<td style="text-align: center;">77.16</td>
</tr>
</tbody>
</table>
</div></td>
</tr>
</tbody>
</table>
<section id="footnotes" class="footnotes footnotes-end-of-document"
role="doc-endnotes">
<hr />
<ol>
<li id="fn1"><p>C-Eval results are evaluated on the validation
datasets<a href="#fnref1" class="footnote-back"
role="doc-backlink">↩︎</a></p></li>
</ol>
</section>

</div>

## Math & Reasoning

|                 Model | gsm8k (0-shot) | MATH (0-shot) | BBH (0-shot) |
|----------------------:|:--------------:|:-------------:|:------------:|
|                 GPT-4 |      91.4      |     45.8      |     86.7     |
|          SUS-Chat-34B |   **80.06**    |     28.7      |    67.62     |
|         Qwen-72b-Chat |  <u>76.57</u>  |   **35.9**    |  **72.63**   |
|     Deepseek-68b-Chat |     74.45      | <u>29.56</u>  | <u>69.73</u> |
| OrionStar-Yi-34B-Chat |     54.36      |     12.8      |    62.88     |
|           Yi-34B-Chat |     63.76      |     10.02     |    61.54     |

## More Tasks

|                 Model | winogrande (5-shot) | arc (25-shot) | hellaswag (10-shot) | TruthfulQA mc1 (0-shot) | TruthfulQA mc2 (0-shot) |
|----------------------:|:-------------------:|:-------------:|:-------------------:|:-----------------------:|:-----------------------:|
|                 GPT-4 |          —          |     94.5      |        91.4         |          59.00          |            —            |
|          SUS-Chat-34B |      **81.22**      | <u>81.54</u>  |        83.79        |        **40.64**        |        **57.47**        |
|         Qwen-72b-Chat |        76.09        |   **82.10**   |    <u>86.06</u>     |          39.17          |      <u>56.37</u>       |
|     Deepseek-68b-Chat |    <u>80.58</u>     |     81.29     |      **87.02**      |      <u>40.02</u>       |          50.64          |
| OrionStar-Yi-34B-Chat |        77.27        |     80.19     |        84.54        |          36.47          |          53.24          |
|           Yi-34B-Chat |        76.64        |     70.66     |        82.29        |          38.19          |          54.57          |

## Overall

|                 Model |  Average  |
|----------------------:|:---------:|
|          SUS-Chat-34B | **69.05** |
|         Qwen-72b-Chat |   68.41   |
|     Deepseek-68b-Chat |   62.91   |
| OrionStar-Yi-34B-Chat |   60.21   |
|           Yi-34B-Chat |   59.72   |

To reproduce the results, please start a corresponding vllm server and
refer to
[here](https://sustech-tlem.static.hf.space/index.html#start-evaluating-your-model-in-3-line).

# Usage

SUS-Chat-34B is a standard LLaMA model and should be seamlessly
compatible with the LLaMA ecosystem. We provide the following example to
demonstrate how it can be used for multi-turn dialogues.

Feel free to [open an
issue](https://github.com/SUSTech-IDEA/SUS-Chat/issues) if you have any
questions.

``` python
from transformers import AutoModelForCausalLM, AutoTokenizer # 🤗 Transformers, or 
# from modelscope import AutoModelForCausalLM, AutoTokenizer # 🤖 ModelScope

def chat_template(messages):
    history = ""
    for message in messages:
        match message:
            case {"role": "user", "content": message}:
                history += f"### Human: {message}\n\n### Assistant: "
            case {"role": "assistant", "content": message}:
                history += message
    return history


model_path = "SUSTech/SUS-Chat-34B"
# model_path = "SUSTC/SUS-Chat-34B" # ModelScope

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, device_map="auto", torch_dtype="auto"
).eval()

messages = [{"role": "user", "content": "hi"}]

input_ids = tokenizer.encode(
    chat_template(messages), return_tensors="pt", add_special_tokens=False
).to("cuda")
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
response = tokenizer.decode(
    output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
)

messages.append({"role": "assistant", "content": response})

# Second round

messages.append({"role": "user", "content": "What is the capital of China?"})

input_ids = tokenizer.encode(
    chat_template(messages), return_tensors="pt", add_special_tokens=False
).to("cuda")
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
response = tokenizer.decode(
    output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
)

messages.append({"role": "assistant", "content": response})
```

# Limitations

SUS-Chat has only undergone supervised fine-tuning and has not yet been
trained on human preference learning. As a result, it may produce
unreasonable responses in some situations and exacerbate existing issues
in language models, including hallucinations, non-determinism, and
cumulative errors. To achieve better performance for downstream tasks,
we recommend adjusting the generation configuration parameters
accordingly.

# Disclaimer

During the training process, we used data compliance check algorithms to
ensure the compliance of the training model as much as possible. Due to
the complexity of the data and the diverse use cases of language models,
we cannot guarantee that the model will produce correct and reasonable
outputs in all scenarios. Please be aware that there is still a risk of
the model generating problematic outputs. We will not be responsible for
any risks or issues arising from misuse, misguidance, illegal use, and
related misinformation, as well as data security issues related to the
model.

# License

This model is developed entirely for academic research and free
commercial use, but it must adhere to the
[license](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
from [01-ai](https://huggingface.co/01-ai).