File size: 1,847 Bytes
1c2e8fa
 
 
 
4f62174
 
 
 
 
 
3b790ed
 
 
5a41956
 
aa7ca29
095ce9f
bebe3cd
095ce9f
 
 
180b1fb
bebe3cd
80d01d4
 
 
0177823
80d01d4
 
2536e0a
80d01d4
d3f115b
80d01d4
 
 
 
 
 
cd0f87b
80d01d4
 
 
 
 
2536e0a
6b5aa8d
80d01d4
2536e0a
 
 
80d01d4
 
351c0b8
80d01d4
2536e0a
80d01d4
d3f115b
80d01d4
 
cd0f87b
 
 
 
99d7e18
351c0b8
99d7e18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: other
license_name: stem.ai.mtl
license_link: LICENSE
language:
- en
tags:
- phi-2
- electrical engineering
- Microsoft
datasets:
- STEM-AI-mtl/Electrical-engineering
- garage-bAInd/Open-Platypus
task_categories:
  - question-answering
  - text-generation
pipeline_tag: text-generation
widget:
  - text: "Enter your instruction here"
inference: true
auto_sample: true
inference_code: chat-GPTQ.py
library_tag: transformers
---
# Model Card for Model ID

This is the adapters from the LoRa fine-tuning of the phi-2 model from Microsoft. It was trained on the STEM-AI-mtl/Electrical-engineering dataset combined with garage-bAInd/Open-Platypus.

- **Developed by:** STEM.AI
- **Model type:** Q&A and code generation
- **Language(s) (NLP):** English
- **Finetuned from model:** microsoft/phi-2


### Direct Use

Q&A related to electrical engineering, and Kicad software. Creation of Python code in general, and for Kicad's scripting console.

Refer to microsoft/phi-2 model card for recommended prompt format.

## Training Details

### Training Data

Dataset related to electrical engineering: STEM-AI-mtl/Electrical-engineering
It is composed of queries, 65% about general electrical engineering, 25% about Kicad (EDA software) and 10% about Python code for Kicad's scripting console.

Combined with

Dataset related to STEM and NLP: garage-bAInd/Open-Platypus

### Training Procedure 
LoRa script:  https://github.com/STEM-ai/Phi-2/raw/4eaa6aaa2679427a810ace5a061b9c951942d66a/LoRa.py

A LoRa PEFT was performed on a 48 Gb A40 Nvidia GPU.

## Model Card Authors

STEM.AI: stem.ai.mtl@gmail.com
William Harbec

### Inference example

Standard: https://github.com/STEM-ai/Phi-2/blob/4eaa6aaa2679427a810ace5a061b9c951942d66a/chat.py

GPTQ format: https://github.com/STEM-ai/Phi-2/blob/ab1ced8d7922765344d824acf1924df99606b4fc/chat-GPTQ.py