
pythia-70m_tatsu-lab_alpaca_farm_sftsd1_policy_pythia-6.9b_gold_pythia-6.9b_noise0.25_rmsd1
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed1 on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8103
- Accuracy: 0.5008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
No log |
0 |
0 |
1.0907 |
0.5042 |
1.037 |
0.0648 |
100 |
1.0820 |
0.5046 |
1.0952 |
0.1296 |
200 |
1.0152 |
0.5012 |
0.9605 |
0.1944 |
300 |
0.9544 |
0.4992 |
0.964 |
0.2592 |
400 |
0.9179 |
0.4958 |
0.9164 |
0.3239 |
500 |
0.8944 |
0.5 |
0.8384 |
0.3887 |
600 |
0.8813 |
0.4950 |
0.8625 |
0.4535 |
700 |
0.8710 |
0.5027 |
0.8597 |
0.5183 |
800 |
0.8650 |
0.4977 |
0.7766 |
0.5831 |
900 |
0.8567 |
0.5008 |
0.8457 |
0.6479 |
1000 |
0.8462 |
0.4950 |
0.7955 |
0.7127 |
1100 |
0.8372 |
0.5012 |
0.7315 |
0.7775 |
1200 |
0.8374 |
0.5046 |
0.8234 |
0.8422 |
1300 |
0.8379 |
0.5077 |
0.8333 |
0.9070 |
1400 |
0.8288 |
0.5031 |
0.8425 |
0.9718 |
1500 |
0.8256 |
0.5050 |
0.7964 |
1.0366 |
1600 |
0.8215 |
0.5066 |
0.8276 |
1.1014 |
1700 |
0.8234 |
0.4907 |
0.8073 |
1.1662 |
1800 |
0.8176 |
0.5023 |
0.826 |
1.2310 |
1900 |
0.8152 |
0.5054 |
0.794 |
1.2958 |
2000 |
0.8088 |
0.5120 |
0.8079 |
1.3605 |
2100 |
0.8122 |
0.4907 |
0.8278 |
1.4253 |
2200 |
0.8100 |
0.5066 |
0.8581 |
1.4901 |
2300 |
0.8117 |
0.5 |
0.8141 |
1.5549 |
2400 |
0.8074 |
0.5058 |
0.8024 |
1.6197 |
2500 |
0.8097 |
0.5015 |
0.8148 |
1.6845 |
2600 |
0.8074 |
0.5050 |
0.7972 |
1.7493 |
2700 |
0.8120 |
0.4985 |
0.8399 |
1.8141 |
2800 |
0.8098 |
0.5012 |
0.7942 |
1.8788 |
2900 |
0.8080 |
0.5031 |
0.7818 |
1.9436 |
3000 |
0.8108 |
0.4958 |
0.8049 |
2.0084 |
3100 |
0.8099 |
0.5058 |
0.7666 |
2.0732 |
3200 |
0.8052 |
0.5054 |
0.8112 |
2.1380 |
3300 |
0.8073 |
0.5050 |
0.8467 |
2.2028 |
3400 |
0.8081 |
0.5135 |
0.7617 |
2.2676 |
3500 |
0.8085 |
0.5131 |
0.7975 |
2.3324 |
3600 |
0.8080 |
0.5042 |
0.7793 |
2.3971 |
3700 |
0.8003 |
0.5096 |
0.8503 |
2.4619 |
3800 |
0.8038 |
0.5116 |
0.8089 |
2.5267 |
3900 |
0.7969 |
0.5093 |
0.7551 |
2.5915 |
4000 |
0.8057 |
0.5135 |
0.7747 |
2.6563 |
4100 |
0.8018 |
0.5069 |
0.7735 |
2.7211 |
4200 |
0.8013 |
0.5089 |
0.8414 |
2.7859 |
4300 |
0.8057 |
0.5031 |
0.8064 |
2.8507 |
4400 |
0.7995 |
0.5108 |
0.757 |
2.9155 |
4500 |
0.7951 |
0.5166 |
0.7859 |
2.9802 |
4600 |
0.8054 |
0.5135 |
0.8022 |
3.0450 |
4700 |
0.7999 |
0.5135 |
0.745 |
3.1098 |
4800 |
0.7987 |
0.5116 |
0.7512 |
3.1746 |
4900 |
0.8007 |
0.5135 |
0.8193 |
3.2394 |
5000 |
0.8024 |
0.5085 |
0.7776 |
3.3042 |
5100 |
0.8042 |
0.5093 |
0.8009 |
3.3690 |
5200 |
0.7996 |
0.5150 |
0.8124 |
3.4338 |
5300 |
0.8000 |
0.5015 |
0.7703 |
3.4985 |
5400 |
0.8024 |
0.5019 |
0.7551 |
3.5633 |
5500 |
0.8033 |
0.5100 |
0.776 |
3.6281 |
5600 |
0.8006 |
0.5042 |
0.803 |
3.6929 |
5700 |
0.8064 |
0.5069 |
0.7834 |
3.7577 |
5800 |
0.8047 |
0.5143 |
0.8225 |
3.8225 |
5900 |
0.8017 |
0.5158 |
0.7677 |
3.8873 |
6000 |
0.8057 |
0.4996 |
0.7731 |
3.9521 |
6100 |
0.7969 |
0.5166 |
0.7742 |
4.0168 |
6200 |
0.7977 |
0.5104 |
0.778 |
4.0816 |
6300 |
0.8000 |
0.5112 |
0.7724 |
4.1464 |
6400 |
0.8009 |
0.5154 |
0.8108 |
4.2112 |
6500 |
0.8040 |
0.5069 |
0.7761 |
4.2760 |
6600 |
0.8082 |
0.5054 |
0.8201 |
4.3408 |
6700 |
0.8020 |
0.5100 |
0.8123 |
4.4056 |
6800 |
0.8063 |
0.5135 |
0.773 |
4.4704 |
6900 |
0.7999 |
0.5120 |
0.7705 |
4.5351 |
7000 |
0.8031 |
0.5066 |
0.7593 |
4.5999 |
7100 |
0.7993 |
0.5143 |
0.7958 |
4.6647 |
7200 |
0.8049 |
0.5089 |
0.7892 |
4.7295 |
7300 |
0.8029 |
0.5104 |
0.8459 |
4.7943 |
7400 |
0.8044 |
0.5127 |
0.8066 |
4.8591 |
7500 |
0.8050 |
0.5100 |
0.7711 |
4.9239 |
7600 |
0.8029 |
0.5081 |
0.754 |
4.9887 |
7700 |
0.8058 |
0.5104 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1