pythia-70m_tatsu-lab_alpaca_farm_sftsd1_policy_pythia-6.9b_gold_offsetbias-8b_noise0.25_rmsd3
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7776
- Accuracy: 0.5216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 1.0327 | 0.5077 |
0.9535 | 0.0648 | 100 | 1.0264 | 0.5158 |
0.9755 | 0.1296 | 200 | 0.9740 | 0.5181 |
0.8994 | 0.1944 | 300 | 0.9211 | 0.5197 |
1.0368 | 0.2592 | 400 | 0.8891 | 0.5166 |
0.8738 | 0.3239 | 500 | 0.8742 | 0.5112 |
0.8397 | 0.3887 | 600 | 0.8433 | 0.5247 |
0.8788 | 0.4535 | 700 | 0.8388 | 0.5108 |
0.8407 | 0.5183 | 800 | 0.8270 | 0.5162 |
0.8564 | 0.5831 | 900 | 0.8211 | 0.5147 |
0.8072 | 0.6479 | 1000 | 0.8153 | 0.5166 |
0.8195 | 0.7127 | 1100 | 0.8016 | 0.5274 |
0.8284 | 0.7775 | 1200 | 0.7983 | 0.5216 |
0.8378 | 0.8422 | 1300 | 0.7994 | 0.5266 |
0.7982 | 0.9070 | 1400 | 0.7974 | 0.5204 |
0.7589 | 0.9718 | 1500 | 0.7959 | 0.5262 |
0.7943 | 1.0366 | 1600 | 0.7955 | 0.5201 |
0.8141 | 1.1014 | 1700 | 0.7921 | 0.5212 |
0.7574 | 1.1662 | 1800 | 0.7853 | 0.5262 |
0.8233 | 1.2310 | 1900 | 0.7873 | 0.5243 |
0.8239 | 1.2958 | 2000 | 0.7843 | 0.5285 |
0.8268 | 1.3605 | 2100 | 0.7807 | 0.5239 |
0.7759 | 1.4253 | 2200 | 0.7882 | 0.5208 |
0.768 | 1.4901 | 2300 | 0.7828 | 0.5282 |
0.7387 | 1.5549 | 2400 | 0.7838 | 0.5201 |
0.8394 | 1.6197 | 2500 | 0.7745 | 0.5235 |
0.7794 | 1.6845 | 2600 | 0.7828 | 0.5166 |
0.8528 | 1.7493 | 2700 | 0.7798 | 0.5224 |
0.839 | 1.8141 | 2800 | 0.7819 | 0.5239 |
0.733 | 1.8788 | 2900 | 0.7787 | 0.5320 |
0.8066 | 1.9436 | 3000 | 0.7792 | 0.5201 |
0.7701 | 2.0084 | 3100 | 0.7764 | 0.5231 |
0.7848 | 2.0732 | 3200 | 0.7768 | 0.5301 |
0.73 | 2.1380 | 3300 | 0.7756 | 0.5166 |
0.8116 | 2.2028 | 3400 | 0.7769 | 0.5312 |
0.8376 | 2.2676 | 3500 | 0.7765 | 0.5258 |
0.7671 | 2.3324 | 3600 | 0.7769 | 0.5266 |
0.8161 | 2.3971 | 3700 | 0.7742 | 0.5347 |
0.787 | 2.4619 | 3800 | 0.7767 | 0.5390 |
0.8023 | 2.5267 | 3900 | 0.7768 | 0.5305 |
0.7526 | 2.5915 | 4000 | 0.7805 | 0.5324 |
0.727 | 2.6563 | 4100 | 0.7763 | 0.5251 |
0.7873 | 2.7211 | 4200 | 0.7754 | 0.5231 |
0.7621 | 2.7859 | 4300 | 0.7830 | 0.5212 |
0.7886 | 2.8507 | 4400 | 0.7738 | 0.5204 |
0.7646 | 2.9155 | 4500 | 0.7730 | 0.5228 |
0.7866 | 2.9802 | 4600 | 0.7787 | 0.5162 |
0.7622 | 3.0450 | 4700 | 0.7727 | 0.5216 |
0.7293 | 3.1098 | 4800 | 0.7792 | 0.5243 |
0.8113 | 3.1746 | 4900 | 0.7728 | 0.5228 |
0.7617 | 3.2394 | 5000 | 0.7821 | 0.5208 |
0.7702 | 3.3042 | 5100 | 0.7727 | 0.5309 |
0.7961 | 3.3690 | 5200 | 0.7722 | 0.5340 |
0.8135 | 3.4338 | 5300 | 0.7762 | 0.5262 |
0.8074 | 3.4985 | 5400 | 0.7763 | 0.5235 |
0.7822 | 3.5633 | 5500 | 0.7725 | 0.5231 |
0.814 | 3.6281 | 5600 | 0.7765 | 0.5255 |
0.7616 | 3.6929 | 5700 | 0.7754 | 0.5255 |
0.7435 | 3.7577 | 5800 | 0.7745 | 0.5301 |
0.7476 | 3.8225 | 5900 | 0.7744 | 0.5297 |
0.7393 | 3.8873 | 6000 | 0.7785 | 0.5216 |
0.7294 | 3.9521 | 6100 | 0.7722 | 0.5266 |
0.7949 | 4.0168 | 6200 | 0.7739 | 0.5293 |
0.8164 | 4.0816 | 6300 | 0.7740 | 0.5255 |
0.7707 | 4.1464 | 6400 | 0.7742 | 0.5243 |
0.8177 | 4.2112 | 6500 | 0.7740 | 0.5220 |
0.7564 | 4.2760 | 6600 | 0.7742 | 0.5235 |
0.779 | 4.3408 | 6700 | 0.7807 | 0.5231 |
0.7708 | 4.4056 | 6800 | 0.7748 | 0.5255 |
0.7598 | 4.4704 | 6900 | 0.7751 | 0.5228 |
0.7925 | 4.5351 | 7000 | 0.7791 | 0.5174 |
0.7565 | 4.5999 | 7100 | 0.7760 | 0.5150 |
0.7486 | 4.6647 | 7200 | 0.7738 | 0.5212 |
0.8015 | 4.7295 | 7300 | 0.7787 | 0.5201 |
0.765 | 4.7943 | 7400 | 0.7752 | 0.5289 |
0.7924 | 4.8591 | 7500 | 0.7729 | 0.5285 |
0.8074 | 4.9239 | 7600 | 0.7709 | 0.5231 |
0.7232 | 4.9887 | 7700 | 0.7783 | 0.5216 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 106
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.