File size: 1,608 Bytes
fe276dd
5907b64
 
fe276dd
5907b64
 
 
 
 
 
 
89b8f4d
fe276dd
5907b64
 
 
 
89b8f4d
5907b64
 
 
 
 
89b8f4d
5907b64
89b8f4d
 
5907b64
89b8f4d
 
5907b64
89b8f4d
 
5907b64
89b8f4d
fe276dd
 
5907b64
 
fe276dd
5907b64
fe276dd
5907b64
fe276dd
5907b64
 
 
 
fe276dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5907b64
 
 
 
 
 
 
fe276dd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- de
license: mit
datasets:
- germaner
metrics:
- precision
- recall
- f1
- accuracy
base_model: deepset/gbert-large
model-index:
- name: gbert-large-germaner
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: germaner
      type: germaner
      args: default
    metrics:
    - type: precision
      value: 0.8693333333333333
      name: precision
    - type: recall
      value: 0.885640362225097
      name: recall
    - type: f1
      value: 0.8774110861903236
      name: f1
    - type: accuracy
      value: 0.9784210744831022
      name: accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gbert-large-germaner

This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the germaner dataset.
It achieves the following results on the evaluation set:
- precision: 0.8693
- recall: 0.8856
- f1: 0.8774
- accuracy: 0.9784

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- num_train_epochs: 5
- train_batch_size: 8
- eval_batch_size: 8
- learning_rate: 2e-05
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True

### Framework versions

- Transformers 4.18.0
- Datasets 1.18.0
- Tokenizers 0.12.1